ipdlme
class represents the fit of a linear mixed-effects model of individual patient data meta-analysis of multiple parallel group clinical trials, based on aggregate data estimation methods.
new("ipdlme", ...)
or via the function
ipdlme
."ipdlme"
represents a linear mixed model to assess effect modification of multiple clinical trials and contains the slots: fixef
:ranef
:vcov.fixef
:vcov.ranef
:sigma2
:VarCorr
:convergence.trace
:converged
:n.iter
:max.iter
:tol
:df
:fixef
signature(object = "ipdlme")
ranef
signature(object = "ipdlme")
coef
signature(object = "ipdlme")
vcov
signature(object = "ipdlme")
Var
signature(object = "ipdlme")
sigma2
signature(object = "ipdlme")
vcov.fixef
signature(object = "ipdlme")
vcov.ranef
signature(object = "ipdlme")
convergence
signature(object = "ipdlme")
converged
signature(object = "ipdlme")
n.iter
signature(object = "ipdlme")
tol
signature(object = "ipdlme")
max.iter
signature(object = "ipdlme")
print
signature(x = "ipdlme")
: print information about
the fitted model. show
signature(object = "ipdlme")
: Same as the
print
method.confint
signature(object = "ipdlme",parm, level = 0.95, ...)
Returns the specified confidence interval for all the population parameters.plot
signature(x = "ipdlme",y,...)
: Displays a forest plot of the study intercept and treatment effects with the option of user-defined labels for the studies.summary
signature(object = "ipdlme")
:Summary table of standard error and Wald tests for the population effects. A list of the study random effects and estimates of the variance components are also displayed.ipdlme
data(regress_chol)
metafit <- ipdlme(n,Y,S2)
converged(metafit)
summary(metafit)
confint(metafit)
Run the code above in your browser using DataLab