Learn R Programming

spdep (version 0.8-1)

joincount.test: BB join count statistic for k-coloured factors

Description

The BB join count test for spatial autocorrelation using a spatial weights matrix in weights list form for testing whether same-colour joins occur more frequently than would be expected if the zones were labelled in a spatially random way. The assumptions underlying the test are sensitive to the form of the graph of neighbour relationships and other factors, and results may be checked against those of joincount.mc permutations.

Usage

joincount.test(fx, listw, zero.policy=NULL, alternative="greater",
 sampling="nonfree", spChk=NULL, adjust.n=TRUE)
# S3 method for jclist
print(x, ...)

Arguments

fx

a factor of the same length as the neighbours and weights objects in listw

listw

a listw object created for example by nb2listw

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA

alternative

a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".

sampling

default “nonfree”, may be “free”

adjust.n

default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted consistently (up to and including spdep 0.3-28 the adjustment was inconsistent - thanks to Tomoki NAKAYA for a careful bug report)

spChk

should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()

x

object to be printed

...

arguments to be passed through for printing

Value

A list with class jclist of lists with class htest for each of the k colours containing the following components:

statistic

the value of the standard deviate of the join count statistic.

p.value

the p-value of the test.

estimate

the value of the observed statistic, its expectation and variance under non-free sampling.

alternative

a character string describing the alternative hypothesis.

method

a character string giving the method used.

data.name

a character string giving the name(s) of the data.

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, pp. 19-20.

See Also

joincount.mc, joincount.multi, listw2U

Examples

Run this code
# NOT RUN {
data(oldcol)
HICRIME <- cut(COL.OLD$CRIME, breaks=c(0,35,80), labels=c("low","high"))
names(HICRIME) <- rownames(COL.OLD)
joincount.test(HICRIME, nb2listw(COL.nb, style="B"))
joincount.test(HICRIME, nb2listw(COL.nb, style="B"), sampling="free")
joincount.test(HICRIME, nb2listw(COL.nb, style="C"))
joincount.test(HICRIME, nb2listw(COL.nb, style="S"))
joincount.test(HICRIME, nb2listw(COL.nb, style="W"))
by(card(COL.nb), HICRIME, summary)
print(is.symmetric.nb(COL.nb))
coords.OLD <- cbind(COL.OLD$X, COL.OLD$Y)
COL.k4.nb <- knn2nb(knearneigh(coords.OLD, 4))
print(is.symmetric.nb(COL.k4.nb))
joincount.test(HICRIME, nb2listw(COL.k4.nb, style="B"))
cat("Note non-symmetric weights matrix - use listw2U()\n")
joincount.test(HICRIME, listw2U(nb2listw(COL.k4.nb, style="B")))
# }

Run the code above in your browser using DataLab