# NOT RUN {
demo(iris)
# }
# NOT RUN {
demo(laser)
# }
# NOT RUN {
demo(eight_elman)
# }
# NOT RUN {
demo(eight_elmanSnnsR)
# }
# NOT RUN {
data(snnsData)
inputs <- snnsData$laser_1000.pat[,inputColumns(snnsData$laser_1000.pat)]
outputs <- snnsData$laser_1000.pat[,outputColumns(snnsData$laser_1000.pat)]
patterns <- splitForTrainingAndTest(inputs, outputs, ratio=0.15)
modelJordan <- jordan(patterns$inputsTrain, patterns$targetsTrain,
size=c(8), learnFuncParams=c(0.1), maxit=100,
inputsTest=patterns$inputsTest,
targetsTest=patterns$targetsTest, linOut=FALSE)
names(modelJordan)
par(mfrow=c(3,3))
plotIterativeError(modelJordan)
plotRegressionError(patterns$targetsTrain, modelJordan$fitted.values)
plotRegressionError(patterns$targetsTest, modelJordan$fittedTestValues)
hist(modelJordan$fitted.values - patterns$targetsTrain, col="lightblue")
plot(inputs, type="l")
plot(inputs[1:100], type="l")
lines(outputs[1:100], col="red")
lines(modelJordan$fitted.values[1:100], col="green")
# }
Run the code above in your browser using DataLab