Usage
Hkda(x, x.group, Hstart, bw="plugin", nstage=2, pilot="samse",
pre="sphere", binned=FALSE, bgridsize)
Hkda.diag(x, x.group, bw="plugin", nstage=2, pilot="samse",
pre="sphere", binned=FALSE, bgridsize)
hkda(x, x.group, bw="plugin", nstage=2, binned=TRUE, bgridsize)kda(x, x.group, Hs, hs, y, prior.prob=NULL)
compare(x.group, est.group, by.group=FALSE)
compare.kda.cv(x, x.group, bw="plugin", prior.prob=NULL, Hstart,
by.group=FALSE, trace=FALSE, binned=FALSE, bgridsize,
recompute=FALSE, ...)
compare.kda.diag.cv(x, x.group, bw="plugin", prior.prob=NULL,
by.group=FALSE, trace=FALSE, binned=FALSE, bgridsize,
recompute=FALSE, ...)
Arguments
x
matrix of training data values
x.group
vector of group labels for training data
Hs
(stacked) matrix of bandwidth matrices
hs
vector of scalar bandwidths
prior.prob
vector of prior probabilities
bw
bandwidth: "plugin"
= plug-in, "lscv"
= LSCV,
"scv"
= SCV
nstage
number of stages in the plug-in bandwidth selector (1 or 2)
pilot
"amse"
= AMSE pilot bandwidths,
"samse"
= single SAMSE pilot bandwidth
pre
"scale"
= pre-scaling, "sphere"
=
pre-sphering
Hstart
(stacked) matrix of initial bandwidth matrices, used in
numerical optimisation
binned
flag for binned kernel estimation. Default is FALSE.
bgridsize
vector of binning grid sizes
est.group
vector of estimated group labels
by.group
flag to give results also within each group
trace
flag for printing messages in command line to
trace the execution
recompute
flag for recomputing the bandwidth matrix after
excluding the i-th data item
...
other optional parameters for bandwidth selection, see
Hpi
, Hlscv
, Hscv