kpca a new basis for the data is found.
The data can then be projected on the new basis.
"kfa"(x, data = NULL, na.action = na.omit, ...)
"kfa"(x, kernel = "rbfdot", kpar = list(sigma = 0.1), features = 0, subset = 59, normalize = TRUE, na.action = na.omit)rbfdot Radial Basis kernel function "Gaussian"
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
splinedot Spline kernel
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
sigma inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel
function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
NAs are
found. The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail, which causes an error if NA cases
are found. (NOTE: If given, this argument must be named.)kfa returns an object of class kfa containing the
features selected by the algorithm.
predict function can be used to embed new data points into to the
selected feature base.
kpca, kfa-classdata(promotergene)
f <- kfa(~.,data=promotergene,features=2,kernel="rbfdot",
kpar=list(sigma=0.01))
plot(predict(f,promotergene),col=as.numeric(promotergene[,1]))
Run the code above in your browser using DataLab