krige.conv(geodata, coords=geodata$coords, data=geodata$data,
locations, borders = NULL, krige, output)krige.control(type.krige = "ok", trend.d = "cte", trend.l = "cte",
obj.model = NULL, beta, cov.model, cov.pars, kappa,
nugget, micro.scale = 0, dist.epsilon = 1e-10,
aniso.pars, lambda)
coords
and
data
as described next. Typically an object of the class
"geodata"
- a geoR data-set. If not provided the arguments
coords
of the argument geodata
, if provided.data
of the argument geodata
, if provided.krige.control
or
a list with elements as for the arguments in krige.control
.
Default values are assumed for arguments ooutput.control
or
a list with elements as for the arguments in output.control
.
Default values are assumed for arguments not provided.
See docume"SK", "OK"
corresponding to simple or ordinary
kriging. Kriging with external trend and universal kriging can be
defined setting type.krige = "OK"
and specifying the
trtrend.spatial
for
further details.
Defaults to "cte"
.trend.d
.
Only used if prediction locations are provided in the argument
locations
.type.krige="SK"
.cov.spatial
."matern"
, "powered.exponential"
, "cauchy"
and
"gneiting.matern"
.aniso.pars = FALSE
no correction is made, otherwise
a two elements vector with values for the anisotropy parameters
must be provided. Anisotropy correction consists of a
transclass
kriging
.
The attribute prediction.locations
containing the name of the
object with the coordinates of the prediction locations (argument
locations
) is assigned to the object.
Returns a list with the following components:type.krige = "SK"
.n.sim > 0
.image.kriging
and persp.kriging
for graphical output of the results,
krige.bayes
for Bayesian prediction and ksline
for a different implementation of kriging allowing for moving
neighborhood. For model fitting see likfit
or variofit
if(is.R()) data(s100)
loci <- expand.grid(seq(0,1,l=31), seq(0,1,l=31))
kc <- krige.conv(s100, loc=loci,
krige=krige.control(cov.pars=c(1, .25)))
par(mfrow=c(1,2))
image(kc, main="kriging estimates")
image(kc, val=sqrt(kc$krige.var), main="kriging std. errors")
<testonly>loci <- expand.grid(seq(0,1,l=6), seq(0,1,l=6))
kc <- krige.conv(s100, loc=loci,
krige=list(cov.pars=c(1, .25), kappa = 1))</testonly>
Run the code above in your browser using DataLab