Learn R Programming

geoRglm (version 0.9-16)

krige.glm.control: Defines options and model for prediction

Description

This auxiliary function defines options and model for pois.krige and binom.krige.

Usage

krige.glm.control(type.krige = "sk", trend.d = "cte", trend.l = "cte",
                  obj.model = NULL, beta, cov.model, cov.pars, kappa,
                  nugget, micro.scale, dist.epsilon = 1e-10, 
                  aniso.pars, lambda)

Arguments

type.krige

type of prediction to be performed (minimal mean square error prediction). Options are "sk" and "ok" corresponding to prediction with fixed parameters (type.krige = "sk"), which is the default, or prediction with a uniform prior on \(\beta\) (type.krige = "ok"). Prediction using a model with covariates can be done by specifying the covariate model using the arguments trend.d and trend.l.

trend.d

specifies the trend (covariate) values at the data locations. See documentation of trend.spatial for further details. Default is trend.d = "cte".

trend.l

specifies the trend (covariate) values at prediction locations. It must be of the same type as for trend.d. Only used if prediction locations are provided in the argument locations.

obj.model

a list with the model parameters.

beta

numerical value of the mean (vector) parameter. Only used if type.krige="sk".

cov.model

string indicating the name of the model for the correlation function. Further details in the documentation for cov.spatial.

cov.pars

a vector with the 2 covariance parameters \(\sigma^2\), and \(\phi\) for the underlying Gaussian field.

kappa

additional smoothness parameter required by the following correlation functions: "matern", "powered.exponential", "cauchy" and "gneiting.matern".

nugget

the value of the nugget parameter \(\tau^2\) for the underlying Gaussian field. Default is nugget = 0.

micro.scale

micro-scale variance. If specified, the nugget is divided into 2 terms: micro-scale variance and measurement error. This has effect on prediction where the ``signal'' part of \(S\) (without the measurement error part of the nugget) is predicted. The default is micro.scale = nugget.

dist.epsilon

a numeric value. Locations which are separated by a distance less than this value are considered co-located.

aniso.pars

parameters for geometric anisotropy correction. If aniso.pars = FALSE no correction is made, otherwise a two elements vector with values for the anisotropy parameters must be provided. Anisotropy correction consists of a transformation of the data and prediction coordinates performed by the function coords.aniso.

lambda

numeric value of the Box-Cox transformation parameter for pois.krige. The value \(\lambda = 1\) corresponds to no transformation and \(\lambda = 0\) corresponds to the log-transformation. Prediction results are back-transformed and returned is the same scale as for the original data.

Value

A list with processed arguments to be passed to the main function.

See Also

pois.krige and binom.krige.