tidyselect implements a DSL for selecting variables. It provides helpers for selecting variables:
var1:var10
: variables lying between var1
on the left and var10
on the right.
starts_with("a")
: names that start with "a"
.
ends_with("z")
: names that end with "z"
.
contains("b")
: names that contain "b"
.
matches("x.y")
: names that match regular expression x.y
.
num_range(x, 1:4)
: names following the pattern, x1
, x2
, ..., x4
.
all_of(vars)
/any_of(vars)
:
matches names stored in the character vector vars
. all_of(vars)
will
error if the variables aren't present; any_of(var)
will match just the
variables that exist.
everything()
: all variables.
last_col()
: furthest column on the right.
where(is.numeric)
: all variables where
is.numeric()
returns TRUE
.
As well as operators for combining those selections:
!selection
: only variables that don't match selection
.
selection1 & selection2
: only variables included in both selection1
and selection2
.
selection1 | selection2
: all variables that match either selection1
or selection2
.
When writing code inside packages you can substitute "var"
for var
to avoid R CMD check
notes.
Here we show the usage for the basic selection operators. See the
specific help pages to learn about helpers like starts_with()
.
The selection language can be used in functions like
dplyr::select()
or tidyr::pivot_longer()
. Let's first attach
the tidyverse:
library(tidyverse)# For better printing
iris <- as_tibble(iris)
Select variables by name:
starwars %>% select(height)
#> # A tibble: 87 x 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # i 83 more rowsiris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6
#> Sepal.Width Petal.Length Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9
#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # i 146 more rows
Select multiple variables by separating them with commas. Note how the order of columns is determined by the order of inputs:
starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass
#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # i 83 more rows
Functions like tidyr::pivot_longer()
don't take variables with
dots. In this case use c()
to select multiple variables:
iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5
#> Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # i 296 more rows
The :
operator selects a range of consecutive variables:
starwars %>% select(name:mass)
#> # A tibble: 87 x 3
#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # i 83 more rows
The !
operator negates a selection:
starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # i 83 more rows
#> # i 3 more variables: films <list>, vehicles <list>, starships <list>iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species
#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows
iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species
#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # i 146 more rows
&
and |
take the intersection or the union of two selections:
iris %>% select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width
#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # i 146 more rowsiris %>% select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width
#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows
To take the difference between two selections, combine the &
and
!
operators:
iris %>% select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length
#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # i 146 more rows
The order of selected columns is determined by the inputs.
all_of(c("foo", "bar"))
selects "foo"
first.
c(starts_with("c"), starts_with("d"))
selects all columns
starting with "c"
first, then all columns starting with "d"
.