Learn R Programming

gespeR (version 1.4.2)

lasso.rand: Randomized Lasso

Description

Based on Meinshausen and Buehlmann (2009)

Usage

lasso.rand(x, y, weakness = 1, subsample = 1:nrow(x), dfmax = (ncol(x) +
  1), lambda = NULL, standardize = FALSE, intercept = FALSE, ...)

Arguments

x
The design matrix
y
The response vector
weakness
The weakness parameter
subsample
The data subsample (default: none)
dfmax
The maxiumum number of degrees of freedom
lambda
The regularisation parameter
standardize
Indicator, wheter to standardize the design matrix
intercept
Indicator, whether to fit an intercept
...
Additional arguments to glmnet

Value

Examples

Run this code
y <- rnorm(50)
 x <- matrix(runif(50 * 20), ncol = 20)
 lasso.rand(x = x, y = y)

Run the code above in your browser using DataLab