## using nnet
library(nnet)
set.seed(123)
mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)
lekprofile(mod)
## Not run:
# ## using RSNNS, no bias layers
#
# library(RSNNS)
#
# x <- neuraldat[, c('X1', 'X2', 'X3')]
# y <- neuraldat[, 'Y1', drop = FALSE]
#
# mod <- mlp(x, y, size = 5)
#
# lekprofile(mod, xvars = x)
#
# ## using neuralnet
#
# library(neuralnet)
#
# mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)
#
# lekprofile(mod)
#
# ## back to nnet, not using formula to create model
# ## y variable must have a name attribute
#
# mod <- nnet(x, y, size = 5)
#
# lekprofile(mod)
#
# ## using caret
#
# library(caret)
#
# mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)
#
# lekprofile(mod)
#
# ## group by clusters instead of sequencing by quantiles
#
# mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)
#
# lekprofile(mod, group_vals = 6) # six clusters
#
# ## enter an arbitrary grouping scheme for the group values
# ## i.e. hold all values at 0.5
# group_vals <- rbind(rep(0.5, length = ncol(x)))
# group_vals <- data.frame(group_vals)
# names(group_vals) <- names(group_vals)
#
# lekprofile(mod, group_vals = group_vals, xsel = 'X3')
# ## End(Not run)
Run the code above in your browser using DataLab