
Find the log-likelihood of the observed fit indices on Model 1 and 2 from the real data on the bivariate sampling distribution of fit indices fitting Model 1 and Model 2 by the datasets from the Model 1 and Model 2. Then, the likelihood ratio is computed (which may be interpreted as posterior odd). If the prior odd is 1 (by default), the likelihood ratio is equivalent to Bayes Factor.
likRatioFit(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2,
usedFit=NULL, prior=1)
The likelihood ratio (Bayes Factor) in preference of Model 1 to Model 2. If the value is greater than 1, Model 1 is preferred. If the value is less than 1, Model 2 is preferred.
lavaan
that saves the analysis result of the first model from the target dataset
lavaan
that saves the analysis result of the second model from the target dataset
SimResult
that saves the simulation of analyzing Model 1 by datasets created from Model 1
SimResult
that saves the simulation of analyzing Model 2 by datasets created from Model 1
SimResult
that saves the simulation of analyzing Model 1 by datasets created from Model 2
SimResult
that saves the simulation of analyzing Model 2 by datasets created from Model 2
Vector of names of fit indices that researchers wish to getCutoffs from. The default is to getCutoffs of all fit indices.
The prior odds. The prior probability that Model 1 is correct over the prior probability that Model 2 is correct.
Sunthud Pornprasertmanit (psunthud@gmail.com)
SimResult
for a detail of simResult
pValueNested
for a nested model comparison by the difference in fit indices
pValueNonNested
for a nonnested model comparison by the difference in fit indices
if (FALSE) {
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.A <- analyze(model.A, PoliticalDemocracy)
# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path.B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.B <- analyze(model.B, PoliticalDemocracy)
loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0
# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)
# Get sample size
n <- nrow(PoliticalDemocracy)
# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)
# Find the likelihood ratio ;The output may contain some warnings here.
# When the number of replications increases (e.g., 1000), the warnings should disappear.
likRatioFit(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)
}
Run the code above in your browser using DataLab