
linDA(variables, group, prior = NULL, validation = NULL, learn = NULL, test = NULL, prob = FALSE)
prior=NULL
implies group proportions"crossval"
or "learntest"
. Default
NULL
validation="learntest"
. Default
NULL
validation="learntest"
. Default
NULL
"linda"
, basically a list with
the following elements:validation=NULL
there is no validation
When validation="crossval"
cross-validation is
performed by randomly separating the observations in ten
groups. When validation="learntest"
validation
is performed by providing a learn-set and a test-set of
observations.
Saporta G. (2006) Probabilites, analyse des donnees et statistique. Editions Technip, Paris.
Tuffery S. (2011) Data Mining and Statistics for Decision Making. Wiley, Chichester.
classify
, desDA
,
geoDA
, quaDA
,
plsDA
## Not run:
# # load iris dataset
# data(iris)
#
# # linear discriminant analysis with no validation
# my_lin1 = linDA(iris[,1:4], iris$Species)
# my_lin1$confusion
# my_lin1$error_rate
#
# # linear discriminant analysis with cross-validation
# my_lin2 = linDA(iris[,1:4], iris$Species, validation="crossval")
# my_lin2$confusion
# my_lin2$error_rate
#
# # linear discriminant analysis with learn-test validation
# learning = c(1:40, 51:90, 101:140)
# testing = c(41:50, 91:100, 141:150)
# my_lin3 = linDA(iris[,1:4], iris$Species, validation="learntest", learn=learning, test=testing)
# my_lin3$confusion
# my_lin3$error_rate
# ## End(Not run)
Run the code above in your browser using DataLab