lm_imp, glm_imp and lme_imp estimate linear, generalized
linear and linear mixed models, respectively, using MCMC sampling.
lm_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0, thin = 1,
monitor_params = NULL, inits = TRUE, modelname = NULL,
modeldir = NULL, overwrite = FALSE, keep_model = FALSE, quiet = TRUE,
progress.bar = "text", warn = TRUE, auxvars = NULL, meth = NULL,
refcats = NULL, scale_vars = NULL, hyperpars = NULL, ...)glm_imp(formula, family, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = NULL, inits = TRUE, modelname = NULL,
modeldir = NULL, overwrite = FALSE, keep_model = FALSE, quiet = TRUE,
progress.bar = "text", warn = TRUE, auxvars = NULL, meth = NULL,
refcats = NULL, scale_vars = NULL, hyperpars = NULL, ...)
lme_imp(fixed, data, random, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = NULL, inits = TRUE, modelname = NULL,
modeldir = NULL, overwrite = FALSE, keep_model = FALSE, quiet = TRUE,
progress.bar = "text", warn = TRUE, auxvars = NULL, meth = NULL,
refcats = NULL, scale_vars = NULL, hyperpars = NULL, ...)
An object of class JointAI
There are some optional parameters that can be passed to …
scale_parsoptional matrix of parameters used for centering and
scaling continuous covariates. If not specified, this will be calculated
automatically. If FALSE, no scaling will be done.
glm_imp()
gaussian |
with links: identity, log |
binomial |
with links: logit, probit, log, cloglog |
Gamma |
with links: identity, log |
poisson |
with links: log, identity |
Implemented imputation models that can be chosen in the argument meth are:
norm |
linear model |
lognorm |
log-linear model for skewed continuous data |
logit |
logistic model for binary data |
multinomial |
multinomial logit model for unordered categorical variables |
ordinal |
cumulative logit model for ordered categorical variables |
monitor_params)Named vector specifying which parameters should be monitored. This can be done
either directly by specifying the name of the parameter or indirectly by one
of the key words summarizing a number of parameters. Except for other,
in which parameter names are specified directly, parameter (groups) are just
set as TRUE or FALSE.
If left unspecified, monitor_params = c("analysis_main" = TRUE) will be used.
| name/key word | what is monitored |
analysis_main |
betas, tau_y and sigma_y |
analysis_random |
ranef, D, invD, RinvD |
imp_pars |
alphas, tau_imp, gamma_imp, delta_imp |
imps |
imputed values |
betas |
regression coefficients of the analysis model |
tau_y |
precision of the residuals from the analysis model |
sigma_y |
standard deviation of the residuals from the analysis model |
ranef |
random effects |
D |
covariance matrix of the random effects |
invD |
inverse of D |
RinvD |
matrix in prior for invD |
alphas |
regression coefficients in the imputation models |
tau_imp |
precision parameters of the residuals from imputation models |
gamma_imp |
intercepts in ordinal imputation models |
delta_imp |
increments of ordinal intercepts |
other |
additional parameters |
monitor_params = c("analysis_main" = TRUE, "tau_y" = FALSE)
would monitor the regression parameters betas and residual standard
deviation sigma_y, but not the residual precision.
monitor_params = c(imps = TRUE) would monitor betas, tau_y,
and sigma_y (because analysis_main = TRUE by default) as well as
the imputed values.
traceplot, densplot,
summary.JointAI, MC_error,
GR_crit, jags.model,
coda.samples, predict.JointAI
# NOT RUN {
mod1 <- lm_imp(y~C1 + C2 + M2, data = wideDF, n.iter = 100)
mod2 <- glm_imp(B1 ~ C1 + C2 + M2, data = wideDF,
family = binomial(link = "logit"), n.iter = 100)
mod3 <- lme_imp(y ~ C1 + B2 + L1 + time, random = ~ time|id,
data = longDF, n.iter = 500)
# }
Run the code above in your browser using DataLab