Learn R Programming

gaston (version 1.4.9)

lmm.simu: Linear mixed model data simulation

Description

Simulate data under a linear mixed model, using the eigen decompositioon of the variance matrix.

Usage

lmm.simu(tau, sigma2, K, eigenK = eigen(K), X, beta)

Arguments

tau
Model parameter
sigma2
Model parameter
K
(Optional) A positive symmetric matrix $K$
eigenK
Eigen decomposition of $K$
X
Covariable matrix
beta
Fixed effect vector of covariables

Value

A named list with two members:

Details

The data are simulated under the following linear mixed model : $$ Y = X\beta + \omega + \varepsilon $$ with $omega ~ N(0, tau K)$ and $epsilon ~ N(0, sigma^2 I_n)$.

The simulation uses $K$ only through its eigen decomposition; the parameter K is therefore optional.

See Also

random.pm

Examples

Run this code
# generate a random positive matrix 
set.seed(1)
R <- random.pm(503)

# simulate data with a "polygenic component" 
y <-  lmm.simu(0.3, 1, eigenK = R$eigen)
str(y)

Run the code above in your browser using DataLab