pwm2lmom.lmom2pwm(lmom)lmom.ub or similar.list is returned.i=1 of the betas vector.$$\lambda_1 = \beta_0 \mbox{,}$$ $$\lambda_2 = 2\beta_1 - \beta_0 \mbox{,}$$ $$\lambda_3 = 6\beta_2 - 6\beta_1 + \beta_0 \mbox{,}$$ $$\lambda_4 = 20\beta_3 - 30\beta_2 + 12\beta_1 - \beta_0\mbox{, and}$$
$$\lambda_5 = 70\beta_4 - 140\beta_3 + 90\beta_2 - 20\beta_1 + \beta_0\mbox{.}$$
The linearity between L-moments and PWMs means that procedures based on one are equivalent to the other. This function only accomodates the first five L-moments and PWMs. Therefore, at least five L-moments are required in the passed argument.
Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
lmom.ub, pwm.ub, pwm2lmompwm <- lmom2pwm(lmom.ub(c(123,34,4,654,37,78)))
lmom2pwm(lmom.ub(rnorm(100)))Run the code above in your browser using DataLab