Learn R Programming

lmomco (version 0.88)

lmomgpaRC: B-type L-moments of the Generalized Pareto Distribution with Right-Tail Censoring

Description

This function computes the B-type L-moments of the Generalized Pareto distribution given the parameters ($\xi$, $\alpha$, and $\kappa$) from pargpaRC and the right-tail censoring fraction $\zeta$. The B-type L-moments in terms of the parameters are

$$\lambda^B_1 = \xi + \alpha m_1 \mbox{,}$$ $$\lambda^B_2 = \alpha (m_1 - m_2) \mbox{,}$$ $$\lambda^B_3 = \alpha (m_1 - 3m_2 + 2m_3)\mbox{,}$$ $$\lambda^B_4 = \alpha (m_1 - 6m_2 + 10m_3 - 5m_4)\mbox{, and}$$ $$\lambda^B_5 = \alpha (m_1 - 10m_2 + 30m_3 - 35m_4 + 14m_5)\mbox{,}$$

where $m_r = \lbrace 1-(1-\zeta)^{r+\kappa}\rbrace/(r+\kappa)$ and $\zeta$ is the right-tail censor fraction or the probability $\mathrm{Pr}\lbrace \rbrace$ that $x$ is less than the quantile at $\zeta$ nonexceedance probability: ($\mathrm{Pr}\lbrace x < X(\zeta) \rbrace$). Finally, the RC in the function name is to denote Right-tail Censoring. lmomgpaRC(para) para{The parameters of the distribution. Note that if the $\zeta$ part of the parameters (see pargpaRC) is not present then zeta=1 is assumed.} An R list is returned.

lambdas{Vector of the L-moments. First element is $\lambda_1$, second element is $\lambda_2$, and so on.} ratios{Vector of the L-moment ratios. Second element is $\tau$, third element is $\tau_3$ and so on.} source{An attribute identifying the computational source of the L-moments: lmomgpa2.} message{For clarity, this function adds the unusual message to an L-moment object that the lambdas and ratios are B-type L-moments.} zeta{The censoring fraction. Assumed equal to unity if not present in the gpa parameter object.} Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.

Hosking, J.R.M., 1995, The use of L-moments in the analysis of censored data, in Recent Advances in Life-Testing and Reliability, edited by N. Balakrishnan, chapter 29, CRC Press, Boca Raton, Fla., pp. 546--560. [object Object] pargpa, pargpaRC, lmomgpa, quagpa, cdfgpa para <- vec2par(c(1500,160,.3),type="gpa") # build a GPA parameter set lmorph(lmomgpa(para)) lmomgpaRC(para) # zeta = 1 is internally assumed if not available # The previous two commands should output the same parameter values from # independent code bases.

# Now assume that we have the sample parameters, but the zeta is nonunity. para$zeta = .8 lmomgpaRC(para) # The B-type L-moments. distribution

Arguments