local_error_call()
is an alternative to explicitly passing a
call
argument to abort()
. It sets the call (or a value that
indicates where to find the call, see below) in a local binding
that is automatically picked up by abort()
.
local_error_call(call, frame = caller_env())
This can be:
A call to be used as context for an error thrown in that execution environment.
The NULL
value to show no context.
An execution environment, e.g. as returned by caller_env()
.
The sys.call()
for that environment is taken as context.
The execution environment in which to set the local error call.
By default abort()
uses the function call of its caller as
context in error messages:
foo <- function() abort("Uh oh.") foo() #> Error in `foo()`: Uh oh.
This is not always appropriate. For example a function that checks an input on the behalf of another function should reference the latter, not the former:
arg_check <- function(arg, error_arg = as_string(substitute(arg))) { abort(cli::format_error("{.arg {error_arg}} is failing.")) }foo <- function(x) arg_check(x) foo() #> Error in `arg_check()`: `x` is failing.
The mismatch is clear in the example above. arg_check()
does not
have any x
argument and so it is confusing to present
arg_check()
as being the relevant context for the failure of the
x
argument.
One way around this is to take a call
or error_call
argument
and pass it to abort()
. Here we name this argument error_call
for consistency with error_arg
which is prefixed because there is
an existing arg
argument. In other situations, taking arg
and
call
arguments might be appropriate.
arg_check <- function(arg, error_arg = as_string(substitute(arg)), error_call = caller_env()) { abort( cli::format_error("{.arg {error_arg}} is failing."), call = error_call ) }foo <- function(x) arg_check(x) foo() #> Error in `foo()`: `x` is failing.
This is the generally recommended pattern for argument checking
functions. If you mention an argument in an error message, provide
your callers a way to supply a different argument name and a
different error call. abort()
stores the error call in the call
condition field which is then used to generate the "in" part of
error messages.
In more complex cases it's often burdensome to pass the relevant
call around, for instance if your checking and throwing code is
structured into many different functions. In this case, use
local_error_call()
to set the call locally or instruct abort()
to climb the call stack one level to find the relevant call. In the
following example, the complexity is not so important that sparing
the argument passing makes a big difference. However this
illustrates the pattern:
arg_check <- function(arg, error_arg = caller_arg(arg), error_call = caller_env()) { # Set the local error call local_error_call(error_call)my_classed_stop( cli::format_error("{.arg {error_arg}} is failing.") ) }
my_classed_stop <- function(message) { # Forward the local error call to the caller's local_error_call(caller_env())
abort(message, class = "my_class") }
foo <- function(x) arg_check(x) foo() #> Error in `foo()`: `x` is failing.
The call
argument can also be the string "caller"
. This is
equivalent to caller_env()
or parent.frame()
but has a lower
overhead because call stack introspection is only performed when an
error is triggered. Note that eagerly calling caller_env()
is
fast enough in almost all cases.
If your function needs to be really fast, assign the error call
flag directly instead of calling local_error_call()
:
.__error_call__. <- "caller"
# NOT RUN {
# Set a context for error messages
function() {
local_error_call(quote(foo()))
local_error_call(sys.call())
}
# Disable the context
function() {
local_error_call(NULL)
}
# Use the caller's context
function() {
local_error_call(caller_env())
}
# }
Run the code above in your browser using DataLab