For logitoffsetlink with deriv = 0, the
logitoffsetlink of theta, i.e.,
log(theta/(1-theta) - K) when inverse = FALSE,
and if inverse = TRUE then
(K + exp(theta))/(1 + exp(theta) + K).
For deriv = 1, then the function returns
deta / dtheta as a function of theta
if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
Details
This link function allows for some asymmetry compared to the
ordinary logit link.
The formula is
$$\log(\theta/(1-\theta) - K)$$
and the default value for the offset $K$ is corresponds to the
ordinary logit link.
When inverse = TRUE will mean that the value will
lie in the interval $(K / (1+K), 1)$.
References
Komori, O. and Eguchi, S. et al., 2016.
An asymmetric logistic model for ecological data.
Methods in Ecology and Evolution,
7.