##load the data
data(mesa.data.model)
##Compute dimensions for the data structure
dim <- loglike.dim(mesa.data.model)
##Let's create random vectors of values
x <- runif(dim$nparam.cov)
x.all <- runif(dim$nparam)
##Compute the gradients
Gf <- loglike.grad(x.all, mesa.data.model, "f")
Gp <- loglike.grad(x, mesa.data.model, "p")
Gr <- loglike.grad(x, mesa.data.model, "r")
##And the Hessian, this may take some time...
Hf <- loglike.hessian(x.all, mesa.data.model, "f")
Hp <- loglike.hessian(x, mesa.data.model, "p")
Hr <- loglike.hessian(x, mesa.data.model, "r")
Run the code above in your browser using DataLab