Learn R Programming

rstanarm (version 2.15.3)

loo.stanreg: Information criteria and cross-validation

Description

For models fit using MCMC, compute approximate leave-one-out cross-validation (LOO, LOOIC) or, less preferably, the Widely Applicable Information Criterion (WAIC) using the loo package. Exact \(K\)-fold cross-validation is also available. Compare two or more models using the compare_models function. Note: these functions are not guaranteed to work properly unless the data argument was specified when the model was fit.

Usage

# S3 method for stanreg
loo(x, ..., k_threshold = NULL)

# S3 method for stanreg waic(x, ...)

kfold(x, K = 10, save_fits = FALSE)

compare_models(..., loos = list())

Arguments

x

A fitted model object returned by one of the rstanarm modeling functions. See stanreg-objects.

...

For the loo method, ... can be used to pass optional arguments (e.g. cores) to psislw. For compare_models, ... should contain two or more objects returned by the loo, kfold, or waic method (see the Examples section, below).

k_threshold

Threshold for flagging estimates of the Pareto shape parameters \(k\) estimated by loo. See the How to proceed when loo gives warnings section, below, for details.

K

For kfold, the number of subsets of equal (if possible) size into which the data will be randomly partitioned for performing \(K\)-fold cross-validation. The model is refit K times, each time leaving out one of the K subsets. If K is equal to the total number of observations in the data then \(K\)-fold cross-validation is equivalent to exact leave-one-out cross-validation.

save_fits

If TRUE, a component 'fits' is added to the returned object to store the cross-validated stanreg objects and the indices of the omitted observations for each fold. Defaults to FALSE.

loos

For compare_models, a list of two or more objects returned by the loo, kfold, or waic method. This argument can be used as an alternative to passing these objects via ....

Value

The loo and waic methods return an object of class 'loo'. See the Value section in loo and waic (from the loo package) for details on the structure of these objects.

kfold returns an object with has classes 'kfold' and 'loo' that has a similar structure as the objects returned by the loo and waic methods.

compare_models returns a vector or matrix with class 'compare.loo'. See the Comparing models section below for more details.

Approximate LOO CV

The loo method for stanreg objects provides an interface to the loo package for approximate leave-one-out cross-validation (LOO). The LOO Information Criterion (LOOIC) has the same purpose as the Akaike Information Criterion (AIC) that is used by frequentists. Both are intended to estimate the expected log predictive density (ELPD) for a new dataset. However, the AIC ignores priors and assumes that the posterior distribution is multivariate normal, whereas the functions from the loo package do not make this distributional assumption and integrate over uncertainty in the parameters. This only assumes that any one observation can be omitted without having a major effect on the posterior distribution, which can be judged using the diagnostic plot provided by the plot.loo method and the warnings provided by the print.loo method (see the How to Use the rstanarm Package vignette for an example of this process).

How to proceed when loo gives warnings (k_threshold)

The k_threshold argument to the loo method for rstanarm models is provided as a possible remedy when the diagnostics reveal problems stemming from the posterior's sensitivity to particular observations. Warnings about Pareto \(k\) estimates indicate observations for which the approximation to LOO is problematic (this is described in detail in Vehtari, Gelman, and Gabry (2016) and the loo package documentation). The k_threshold argument can be used to set the \(k\) value above which an observation is flagged. If k_threshold is not NULL and there are \(J\) observations with \(k\) estimates above k_threshold then when loo is called it will refit the original model \(J\) times, each time leaving out one of the \(J\) problematic observations. The pointwise contributions of these observations to the total ELPD are then computed directly and substituted for the previous estimates from these \(J\) observations that are stored in the object created by loo.

Note: in the warning messages issued by loo about large Pareto \(k\) estimates we recommend setting k_threshold to at least \(0.7\). There is a theoretical reason, explained in Vehtari, Gelman, and Gabry (2016), for setting the threshold to the stricter value of \(0.5\), but in practice they find that errors in the LOO approximation start to increase non-negligibly when \(k > 0.7\).

K-fold CV

The kfold function performs exact \(K\)-fold cross-validation. First the data are randomly partitioned into \(K\) subsets of equal (or as close to equal as possible) size. Then the model is refit \(K\) times, each time leaving out one of the K subsets. If \(K\) is equal to the total number of observations in the data then \(K\)-fold cross-validation is equivalent to exact leave-one-out cross-validation (to which loo is an efficient approximation). The compare_models function is also compatible with the objects returned by kfold.

Comparing models

compare_models is a wrapper around the compare function in the loo package. Before calling compare, compare_models performs some extra checks to make sure the rstanarm models are suitable for comparison. These extra checks include verifying that all models to be compared were fit using the same outcome variable and likelihood family.

If exactly two models are being compared then compare_models returns a vector containing the difference in expected log predictive density (ELPD) between the models and the standard error of that difference (the documentation for compare has additional details about the calculation of the standard error of the difference). The difference in ELPD will be negative if the expected out-of-sample predictive accuracy of the first model is higher. If the difference is be positive then the second model is preferred.

If more than two models are being compared then compare_models returns a matrix with one row per model. This matrix summarizes the objects and arranges them in descending order according to expected out-of-sample predictive accuracy. That is, the first row of the matrix will be for the model with the largest ELPD (smallest LOOIC).

References

Vehtari, A., Gelman, A., and Gabry, J. (2016a). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. Advance online publication. doi:10.1007/s11222-016-9696-4. arXiv preprint: http://arxiv.org/abs/1507.04544/

See Also

  • The various rstanarm vignettes for more examples of using loo and compare_models.

  • loo-package (in particular the PSIS-LOO section) for details on the computations implemented by the loo package and the interpretation of the Pareto \(k\) estimates displayed when using the plot.loo method.

  • log_lik.stanreg to directly access the pointwise log-likelihood matrix.

Examples

Run this code
# NOT RUN {
fit1 <- stan_glm(mpg ~ wt, data = mtcars)
fit2 <- stan_glm(mpg ~ wt + cyl, data = mtcars)

# compare on LOOIC
(loo1 <- loo(fit1, cores = 2))
loo2 <- loo(fit2, cores = 2)
plot(loo2)

# when comparing exactly two models, the reported 'elpd_diff' will be 
# positive if the expected predictive accuracy for the second model is higher
compare_models(loo1, loo2) # or compare_models(loos = list(loo1, loo2))

# when comparing three or more models they are ordered by expected
# predictive accuracy
fit3 <- stan_glm(mpg ~ ., data = mtcars)
loo3 <- loo(fit3, k_threshold = 0.7, cores = 2)
compare_models(loo1, loo2, loo3)

# 10-fold cross-validation
(kfold1 <- kfold(fit1, K = 10))
kfold2 <- kfold(fit2, K = 10)
compare_models(kfold1, kfold2)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab