#
# Set up problem: maximize
# x1 + 9 x2 + x3 subject to
# x1 + 2 x2 + 3 x3 <= 9
# 3 x1 + 2 x2 + 2 x3 <= 15
#
f.obj <- c(1, 9, 3)
f.con <- matrix (c(1, 2, 3, 3, 2, 2), nrow=2, byrow=TRUE)
f.dir <- c("<=", "<=")
f.rhs <- c(9, 15)
#
# Now run.
#
lp ("max", f.obj, f.con, f.dir, f.rhs)
Success: the objective function is 40.5
lp ("max", f.obj, f.con, f.dir, f.rhs)$solution
[1] 0.0 4.5 0.0
#
# Get sensitivities
#
lp ("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.from
[1] -1e+30 2e+00 -1e+30
lp ("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.to
[1] 4.50e+00 1.00e+30 1.35e+01
#
# Right now the dual values for the constraints and the variables are
# combined, constraints coming first. So in this example...
#
lp ("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals
[1] 4.5 0.0 -3.5 0.0 -10.5
#
# ...the duals of the constraints are 4.5 and 0, and of the variables,
# -3.5, 0.0, -10.5. Here are the lower and upper limits on these:
#
lp ("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.from
[1] 0e+00 -1e+30 -1e+30 -1e+30 -6e+00
lp ("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.to
[1] 1.5e+01 1.0e+30 3.0e+00 1.0e+30 3.0e+00
#
# Run again, this time requiring that all three variables be integer
#
lp ("max", f.obj, f.con, f.dir, f.rhs, int.vec=1:3)
Success: the objective function is 37
lp ("max", f.obj, f.con, f.dir, f.rhs, int.vec=1:3)$solution
[1] 1 4 0
#
# You can get sensitivities in the integer case, but they're harder to
# interpret.
#
lp ("max", f.obj, f.con, f.dir, f.rhs, int.vec=1:3, compute.sens=TRUE)$duals
[1] 1 0 0 7 0
Run the code above in your browser using DataLab