Learn R Programming

creditmodel (version 1.0)

lr_params: Logistic Regression & Scorecard Parameters

Description

lr_params is the list of parameters to train a LR model or Scorecard using in training_model.

Usage

lr_params(tree_control = list(p = 0.02, cp = 0.00000001, xval = 5,
  maxdepth = 10), bins_control = list(bins_num = 10, bins_pct = 0.05,
  b_chi = 0.02, b_odds = 0.1, b_psi = 0.03, b_gb = 0.15, mono = 0.2, gb_psi
  = 0.15, kc = 1), best_lambda = "lambda.sim_sign", sp_values = NULL,
  forced_in = NULL, obsweight = c(1, 1), lasso = TRUE,
  vars_plot = TRUE, step_wise = TRUE, score_card = TRUE,
  cor_p = 0.8, iv_i = 0.02, psi_i = 0.1, ...)

Arguments

tree_control

the list of parameters to control cutting initial breaks by decision tree. See details at: get_tree_breaks

bins_control

the list of parameters to control merging initial breaks. See details at: select_best_breaks,select_best_class

best_lambda

Metheds of best lanmbda stardards using to filter variables by LASSO.There are four methods: ("lambda.min", "lambda.1se", "lambda.05se" , "lambda.sim_sign") . Default is "lambda.sim_sign". See details at: get_best_lambda

sp_values

Vaules will be in separate bins.e.g. list(-1, "Unknown") means that -1 & Unknown as special values.Default is NULL.

forced_in

Names of forced input variables. Default is NULL.

obsweight

An optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector. If you oversample or cluster diffrent datasets to training the LR model, you need to set this parameter to ensure that the probability of logistic regression output is the same as that before oversampling or segmentation. e.g.:There are 10,000 good obs and 500 bad obs before oversampling or under-sampling, 5,000 good obs and 3,000 bad obs after oversampling. Then this parameter should be set to c(10000/5000, 500/3000). Default is NULL..

lasso

Logical, if TRUE, variables filtering by LASSO. Default is TRUE.

vars_plot

Logical, if TRUE, plot distribution and correlation of input variables . Default is TRUE.

step_wise

Logical, stepwise method. Default is TRUE.

score_card

Logical, transfer woe to a standard scorecard. If TRUE, Output scorecard, and score prediction, otherwise output probability. Default is TRUE.

cor_p

The maximum threshold of correlation. Default: 0.8.

iv_i

The minimum threshold of IV. 0.01 to 0.1 usually work. Default: 0.02

psi_i

The maximum threshold of PSI. 0.1 to 0.3 usually work. Default: 0.1.

...

Other parameters

Value

A list of parameters.

See Also

training_model, xgb_params, gbm_params, rf_params