lvplot.rrvglm(object,
A = TRUE, C = TRUE, scores = FALSE, plot.it = TRUE,
groups = rep(1, n), gapC = sqrt(sum(par()$cxy^2)),
scaleA = 1,
xlab = "Latent Variable 1", ylab = "Latent Variable 2",
Alabels = if (length(object@misc$predictors.names))
object@misc$predictors.names else paste("LP", 1:M, sep = ""),
Aadj = par()$adj, Acex = par()$cex, Acol = par()$col,
Apch = NULL,
Clabels = rownames(Cmat), Cadj = par()$adj,
Ccex = par()$cex, Ccol = par()$col, Clty = par()$lty,
Clwd = par()$lwd,
chull.arg = FALSE, ccex = par()$cex, ccol = par()$col,
clty = par()$lty, clwd = par()$lwd,
spch = NULL, scex = par()$cex, scol = par()$col,
slabels = rownames(x2mat), ...)
"rrvglm"
.TRUE
then
C is represented by arrows emenating from the origin.FALSE
, no plot is produced
and the matrix of scores ($n$ latent variable values) is returned.
If TRUE
, the rank of object
need not be 2.multinomial
par
.par
.adj
argument of par
.cex
argument of par
.col
argument of par
.par
.
The pch
argument can be of length $M$, the number of speadj
argument of par
.cex
argument of par
.col
argument of par
.lty
argument of par
.lwd
argument of par
.group
argument).cex
argument of par
.col
argument of par
.lty
argument of par
.lwd
argument of par
.par
.
The spch
argument can be of length $M$, the number of spcex
argument of par
.col
argument of par
.plot
function
when setting up the entire plot. Useful arguments here include
xlim
and ylim
.length(unique(groups))
),
and ``s'' to scores (of length $n$).As the result is a biplot, its interpretation is based on the inner product.
lvplot
,
par
,
rrvglm
,
Coef.rrvglm
,
rrvglm.control
.nn = nrow(pneumo) # x1, x2 and x3 are some unrelated covariates
pneumo = transform(pneumo, slet=scale(log(exposure.time)),
x1 = rnorm(nn), x2 = rnorm(nn), x3 = rnorm(nn))
fit = rrvglm(cbind(normal, mild, severe) ~ slet + x1 + x2 + x3,
multinomial, pneumo, Rank=2, Corner=FALSE, Uncorrel=TRUE)
lvplot(fit, chull=TRUE, scores=TRUE, clty=2, ccol="blue", scol="red",
Ccol="darkgreen", Clwd=2, Ccex=2,
main="Biplot of some fictitional data")
Run the code above in your browser using DataLab