Learn R Programming

gmodels (version 2.18.1)

make.contrasts: Construct a User-Specified Contrast Matrix

Description

Construct a user-specified contrast matrix.

Usage

make.contrasts(contr, how.many = ncol(contr))

Arguments

contr

vector or matrix specifying contrasts (one per row).

how.many

dimensions of the desired contrast matrix. This must equal the number of levels of the target factor variable.

Value

make.contrasts returns a matrix with dimensions (how.many, how.many) containing the specified contrasts augmented (if necessary) with orthogonal "filler" contrasts.

This matrix can then be used as the argument to contrasts or to the contrasts argument of model functions (eg, lm).

Details

This function converts human-readable contrasts into the form that R requires for computation.

Specifying a contrast row of the form c(1,0,0,-1) creates a contrast that will compare the mean of the first group with the mean of the fourth group.

See Also

lm, contrasts, contr.treatment, contr.poly, Computation and testing of General Linear Hypothesis: glh.test, Computation and testing of estimable functions of model coefficients: estimable, Estimate and Test Contrasts for a previously fit linear model: fit.contrast

Examples

Run this code
# NOT RUN {
set.seed(4684)
y <- rnorm(100)
x.true <- rnorm(100, mean=y, sd=0.25)
x <-  factor(cut(x.true,c(-4,-1.5,0,1.5,4)))
reg <- lm(y ~ x)
summary(reg)

# Mirror default treatment contrasts
test <- make.contrasts(rbind( c(-1,1,0,0), c(-1,0,1,0), c(-1,0,0,1) ))
lm( y ~ x, contrasts=list(x = test ))

# Specify some more complicated contrasts
#   - mean of 1st group vs mean of 4th group
#   - mean of 1st and 2nd groups vs mean of 3rd and 4th groups
#   - mean of 1st group vs mean of 2nd, 3rd and 4th groups
cmat <- rbind( "1 vs 4"    =c(-1, 0, 0, 1),
               "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2),
               "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3))

summary(lm( y ~ x, contrasts=list(x=make.contrasts(cmat) )))
# or
contrasts(x) <- make.contrasts(cmat)
summary(lm( y ~ x ) )

# or use contrasts.lm
reg <- lm(y ~ x)
fit.contrast( reg, "x", cmat )

# compare with values computed directly using group means
gm <- sapply(split(y,x),mean)
gm 
# }
# NOT RUN {
<!-- %*% t(cmat) -->
# }
# NOT RUN {

#
# Example for Analysis of Variance
#

set.seed(03215)
Genotype <- sample(c("WT","KO"), 1000, replace=TRUE)
Time <- factor(sample(1:3, 1000, replace=TRUE))
data <- data.frame(y, Genotype, Time)
y <- rnorm(1000)

data <- data.frame(y, Genotype, as.factor(Time))

# Compute Contrasts & obtain 95% confidence intervals

model <- aov( y ~ Genotype + Time + Genotype:Time, data=data )

fit.contrast( model, "Genotype", rbind("KO vs WT"=c(-1,1) ), conf=0.95 )

fit.contrast( model, "Time",
            rbind("1 vs 2"=c(-1,1,0),
                  "2 vs 3"=c(0,-1,1)
                  ),
            conf=0.95 )


cm.G <- rbind("KO vs WT"=c(-1,1) )
cm.T <- rbind("1 vs 2"=c(-1,1,0),
              "2 vs 3"=c(0,-1,1) )

# Compute contrasts and show SSQ decompositions

model <- model <- aov( y ~ Genotype + Time + Genotype:Time, data=data,
                      contrasts=list(Genotype=make.contrasts(cm.G),
                                     Time=make.contrasts(cm.T) )
                      )

summary(model, split=list( Genotype=list( "KO vs WT"=1 ),
                           Time = list( "1 vs 2" = 1,
                                        "2 vs 3" = 2 ) ) )


# }

Run the code above in your browser using DataLab