Learn R Programming

geojsonio (version 0.1.8)

map_gist: Publish an interactive map as a GitHub gist

Description

There are two ways to authorize to work with your GitHub account:

Using the PAT method is recommended.

Using the gist_auth() function you can authenticate seperately first, or if you're not authenticated, this function will run internally with each functionn call. If you have a PAT, that will be used, if not, OAuth will be used.

Usage

map_gist(input, lat = "lat", lon = "long", geometry = "point", group = NULL, type = "FeatureCollection", file = "myfile.geojson", description = "", public = TRUE, browse = TRUE, ...)

Arguments

input
Input object
lat
Name of latitude variable
lon
Name of longitude variable
geometry
(character) Are polygons in the object
group
(character) A grouping variable to perform grouping for polygons - doesn't apply for points
type
(character) One of FeatureCollection or GeometryCollection
file
File name to use to put up as the gist file
description
Description for the Github gist, or leave to default (=no description)
public
(logical) Want gist to be public or not? Default: TRUE
browse
If TRUE (default) thef map opens in your default browser.
...
Further arguments passed on to POST

Examples

Run this code
## Not run: 
# # From file
# file <- "myfile.geojson"
# geojson_write(us_cities[1:20, ], lat='lat', lon='long', file = file)
# map_gist(file=as.location(file))
# 
# # From SpatialPoints class
# library("sp")
# x <- c(1,2,3,4,5)
# y <- c(3,2,5,1,4)
# s <- SpatialPoints(cbind(x,y))
# map_gist(s)
# 
# # from SpatialPointsDataFrame class
# x <- c(1,2,3,4,5)
# y <- c(3,2,5,1,4)
# s <- SpatialPointsDataFrame(cbind(x,y), mtcars[1:5,])
# map_gist(s)
# 
# # from SpatialPolygons class
# poly1 <- Polygons(list(Polygon(cbind(c(-100,-90,-85,-100),
#    c(40,50,45,40)))), "1")
# poly2 <- Polygons(list(Polygon(cbind(c(-90,-80,-75,-90),
#    c(30,40,35,30)))), "2")
# sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
# map_gist(sp_poly)
# 
# # From SpatialPolygonsDataFrame class
# sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
# map_gist(sp_poly)
# 
# # From SpatialLines class
# c1 <- cbind(c(1,2,3), c(3,2,2))
# c2 <- cbind(c1[,1]+.05,c1[,2]+.05)
# c3 <- cbind(c(1,2,3),c(1,1.5,1))
# L1 <- Line(c1)
# L2 <- Line(c2)
# L3 <- Line(c3)
# Ls1 <- Lines(list(L1), ID = "a")
# Ls2 <- Lines(list(L2, L3), ID = "b")
# sl1 <- SpatialLines(list(Ls1))
# sl12 <- SpatialLines(list(Ls1, Ls2))
# map_gist(sl1)
# 
# # From SpatialLinesDataFrame class
# dat <- data.frame(X = c("Blue", "Green"),
#                  Y = c("Train", "Plane"),
#                  Z = c("Road", "River"), row.names = c("a", "b"))
# sldf <- SpatialLinesDataFrame(sl12, dat)
# map_gist(sldf)
# 
# # From SpatialGrid
# x <- GridTopology(c(0,0), c(1,1), c(5,5))
# y <- SpatialGrid(x)
# map_gist(y)
# 
# # From SpatialGridDataFrame
# sgdim <- c(3,4)
# sg <- SpatialGrid(GridTopology(rep(0,2), rep(10,2), sgdim))
# sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
# map_gist(sgdf)
# 
# # from data.frame
# ## to points
# map_gist(us_cities)
# 
# ## to polygons
# head(states)
# map_gist(states[1:351, ], lat='lat', lon='long', geometry="polygon", group='group')
# 
# ## From a list
# mylist <- list(list(lat=30, long=120, marker="red"),
#                list(lat=30, long=130, marker="blue"))
# map_gist(mylist, lat="lat", lon="long")
# 
# # From a numeric vector
# ## of length 2 to a point
# vec <- c(-99.74,32.45)
# map_gist(vec)
# 
# ## this requires numeric class input, so inputting a list will dispatch on the list method
# poly <- c(c(-114.345703125,39.436192999314095),
#           c(-114.345703125,43.45291889355468),
#           c(-106.61132812499999,43.45291889355468),
#           c(-106.61132812499999,39.436192999314095),
#           c(-114.345703125,39.436192999314095))
# map_gist(poly, geometry = "polygon")
# 
# # From a json object
# (x <- geojson_json(c(-99.74,32.45)))
# map_gist(x)
# ## another example
# map_gist(geojson_json(us_cities[1:10,], lat='lat', lon='long'))
# 
# # From a geo_list object
# (res <- geojson_list(us_cities[1:2,], lat='lat', lon='long'))
# map_gist(res)
# 
# # From SpatialPixels
# pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
# summary(pixels)
# map_gist(pixels)
# 
# # From SpatialPixelsDataFrame
# pixelsdf <- suppressWarnings(
#  SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
# )
# map_gist(pixelsdf)
# 
# # From SpatialRings
# library("rgeos")
# r1 <- Ring(cbind(x=c(1,1,2,2,1), y=c(1,2,2,1,1)), ID="1")
# r2 <- Ring(cbind(x=c(1,1,2,2,1), y=c(1,2,2,1,1)), ID="2")
# r1r2 <- SpatialRings(list(r1, r2))
# map_gist(r1r2)
# 
# # From SpatialRingsDataFrame
# dat <- data.frame(id = c(1,2), value = 3:4)
# r1r2df <- SpatialRingsDataFrame(r1r2, data = dat)
# map_gist(r1r2df)
# ## End(Not run)

Run the code above in your browser using DataLab