Learn R Programming

semTools (version 0.4-11)

mardiaSkew: Finding Mardia's multivariate skewness

Description

Finding Mardia's multivariate skewness of multiple variables

Usage

mardiaSkew(dat)

Arguments

dat
The target matrix or data frame with multiple variables

Value

  • A value of a Mardia's multivariate skewness with a test statistic

Details

The Mardia's multivariate skewness formula (Mardia, 1970) is $$b_{1, d} = \frac{1}{n^2}\sum^n_{i=1}\sum^n_{j=1}\left[ \left(\bold{X}_i - \bold{\bar{X}} \right)^{'} \bold{S}^{-1} \left(\bold{X}_j - \bold{\bar{X}} \right) \right]^3,$$ where $d$ is the number of variables, $X$ is the target dataset with multiple variables, $n$ is the sample size, $\bold{S}$ is the sample covariance matrix of the target dataset, and $\bold{\bar{X}}$ is the mean vectors of the target dataset binded in $n$ rows. When the population multivariate skewness is normal, the $\frac{n}{6}b_{1,d}$ is asymptotically distributed as chi-square distribution with $d(d + 1)(d + 2)/6$ degrees of freedom.

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530.

See Also

  • skewFind the univariate skewness of a variable
  • kurtosisFind the univariate excessive kurtosis of a variable
  • mardiaKurtosisFind the Mardia's multivariate kurtosis of a set of variables

Examples

Run this code
library(lavaan)
mardiaSkew(HolzingerSwineford1939[,paste("x", 1:9, sep="")])

Run the code above in your browser using DataLab