## ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
## Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, print.level=2)
summary(a)
## Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
summary(a)
##
##
## Next, we give an example with vector argument: Estimate the mean and
## variance of a random normal sample by maximum likelihood
##
loglik <- function(param) {
mu <- param[1]
sigma <- param[2]
ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)
ll
}
x <- rnorm(1000, 1, 2) # use mean=1, stdd=2
N <- length(x)
res <- maxLik(loglik, start=c(0,1)) # use 'wrong' start values
summary(res)
Run the code above in your browser using DataLab