mclustBootstrapLRT(data, modelName = NULL, nboot = 999,
level = 0.05, maxG = NULL, verbose = TRUE, ...)
## S3 method for class 'mclustBootstrapLRT':
print(x, \dots)## S3 method for class 'mclustBootstrapLRT':
plot(x, G = 1, hist.col = "grey", hist.border = "lightgrey", breaks = "Scott",
col = "forestgreen", lwd = 2, lty = 3, main = NULL, \dots)
mclustModelNames
describes the available models.level
.TRUE
and the session is interactive a text progress bar is displayed during the bootstrap procedure.'mclustBootstrapLRT'
object.hist
.'mclustBootstrapLRT'
with the following components:nboot
x the number of components tested
containing the bootstrap values of LRTS.McLachlan G.J. (1987) On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36, 318-324.
McLachlan, G.J. and Peel, D. (2000) Finite Mixture Models. Wiley.
McLachlan, G.J. and Rathnayake, S. (2014) On the number of components in a Gaussian mixture model. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), pp. 341-355.
mclustBIC
, mclustICL
, Mclust
data(faithful)
faithful.boot = mclustBootstrapLRT(faithful, model = "VVV")
faithful.boot
plot(faithful.boot, G = 1)
plot(faithful.boot, G = 2)
Run the code above in your browser using DataLab