Learn R Programming

GRENITS (version 1.24.0)

mcmc.defaultParams_nonLinear: Default Parameters for non-Linear Model

Description

Create parameter vector with default parameters for NonLinearNet function

Usage

mcmc.defaultParams_nonLinear()

Arguments

Value

Returns a single vector with the following elements (in this order):
(1) samples
Number of MCMC iterations to run.
(2) burn.in
Number of initial iterations to discard as burn in.
(3) thin
Subsampling frequency
(4) c
Shape parameter 1 for Beta(c,d) prior on rho (connectivity parameter)
(5) d
Shape parameter 2 for Beta(c,d) prior on rho (connectivity parameter)
(6) trunc
Truncation parameter for InvertedPareto prior on tau (smoothness parameter)
(7) tau0
Precision parameter for N(0, tau0^(-0.5)) prior on B (first two coefficients)
(8) M
Numer of knots used for each spline function
(9) a
Shape parameter for Gamma(a,b) prior on lambda (Regression precision)
(10) b
Rate parameter for Gamma(a,b) prior on lambda (Regression precision)
(11) sigma.mu
Standard deviation parameter for N(0,sigma.mu) prior on mu (Regression intercept)
(12) a_pareto
Pareto parameter for InvertedPareto prior on tau (smoothness parameter)

Details

Use this function to generate a template parameter vector to use non-default parameters for the NonLinearNet model.

References

Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009

See Also

plotPriors, NonLinearNet.

Examples

Run this code
    # Get default parameters
    nonLinearNet.params <- mcmc.defaultParams_nonLinear()

    # Change run length
    nonLinearNet.params[1] <- 150000

    # Change prior on smoothness parameter
    nonLinearNet.params[6] <- 30000 # Change truncation 
    nonLinearNet.params[12] <- 3 # Concentrate more mass close to linear region

    # Plot to check changes
    plotPriors(nonLinearNet.params)

    ## Use to run LinearNet ...

Run the code above in your browser using DataLab