Learn R Programming

mdgsa (version 1.4.2)

mdPat: Multi-Dimensional Gene Set Analysis Pattern Classification.

Description

Classifies significant patterns form a Multi-Variate Gene Set Analysis.

Usage

mdPat(gsaout, cutoff = 0.05, pvalue = "padj")

Arguments

gsaout
data.frame; output from mdGsa.
cutoff
p-value cutoff for considering significant a Gene Set.
pvalue
p-value column to be used. Default is named "padj" as in mdGsa output.

Value

  • A character vector indicating the pattern associated to each Gene Set.

Details

Sign of the three 'lor' and p-values are used to classify functional blocks. The classification is done in the two dimensional space previously analyzed by mdGsa.

All possible functional block classifications in the bi-dimensional gene set analysis are:

  • q1i: block displaced toward quadrant1(0 < X & 0 < Y) with interaction.
  • q2i: block displaced toward quadrant2(0 > X & 0 < Y) with interaction.
  • q3i: block displaced toward quadrant3(0 > X & 0 > Y) with interaction.
  • q4i: block displaced toward quadrant4(0 < X & 0 > Y) with interaction.
  • q1f: block displaced toward quadrant1, no interaction.
  • q2f: block displaced toward quadrant2, no interaction.
  • q3f: block displaced toward quadrant3, no interaction.
  • q4f: block displaced toward quadrant4, no interaction.
  • xh: block shifted topositive Xvalues.
  • xl: block shifted tonegative Xvalues.
  • yh: block shifted topositive Yvalues.
  • yl: block shifted tonegative Yvalues.
  • b13: bimodal block. Half of the genes displaced towards quadrant1and the other half towards quadrant3.
  • b24: bimodal block. Half of the genes displaced towards quadrant2and the other half towards quadrant4.
  • NS:non significantblock.

References

Montaner et al. (2010) "Multidimensional Gene Set Analysis of Genomic Data." PLoS ONE.

See Also

mdGsa, uvPat

Examples

Run this code
N <- c (10, 20, 30, 40)
lor.X <- c (1.45, -0.32, 1.89, -1.66)
lor.Y <- c (2.36, -1.86, 0.43, -2.01)
lor.I <- c (0.89, -0.12, 0.24,  3.55)
pval.X <- c (0.001, 0.002, 0.003, 0.06)
pval.Y <- c (0.002, 0.003, 0.06,  0.07)
pval.I <- c (0.003, 0.02,  0.05,  0.08)
padj.X <- p.adjust (pval.X, "BY")
padj.Y <- p.adjust (pval.Y, "BY")
padj.I <- p.adjust (pval.I, "BY")

mdGsa.res <- as.data.frame (cbind (N,
                                   lor.X, lor.Y, lor.I,
                                   pval.X, pval.Y, pval.I,
                                   padj.X, padj.Y, padj.I))
mdGsa.res

mdGsa.res[,"pat"] <- mdPat (mdGsa.res)
mdGsa.res

Run the code above in your browser using DataLab