# NOT RUN {
# randomly mask data
set.seed(11)
masked_data <- iris
masked_data[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA
# use the functions in the package
library(mdgc)
obj <- get_mdgc(masked_data)
ptr <- get_mdgc_log_ml(obj)
start_vals <- mdgc_start_value(obj)
fit <- mdgc_fit(ptr, start_vals, obj$means, rel_eps = 1e-2, maxpts = 10000L,
minvls = 1000L, use_aprx = TRUE, batch_size = 100L, lr = .001,
maxit = 100L, n_threads = 2L)
# impute using the estimated values
imputed <- mdgc_impute(obj, fit$result$vcov, fit$result$mea, minvls = 1000L,
maxit = 10000L, n_threads = 2L, use_aprx = TRUE)
imputed[1:5] # first 5 observations
head(masked_data, 5) # observed
head(iris , 5) # truth
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab