Learn R Programming

optmatch (version 0.9-17)

mdist: (Deprecated, in favor of match_on) Create matching distances

Description

Deprecated in favor of match_on

Usage

mdist(x, structure.fmla = NULL, ...)

# S3 method for optmatch.dlist mdist(x, structure.fmla = NULL, ...)

# S3 method for `function` mdist(x, structure.fmla = NULL, data = NULL, ...)

# S3 method for formula mdist(x, structure.fmla = NULL, data = NULL, subset = NULL, ...)

# S3 method for glm mdist(x, structure.fmla = NULL, standardization.scale = mad, ...)

# S3 method for bigglm mdist(x, structure.fmla = NULL, data = NULL, standardization.scale = mad, ...)

# S3 method for numeric mdist(x, structure.fmla = NULL, trtgrp = NULL, ...)

Arguments

x

The object to use as the basis for forming the mdist. Methods exist for formulas, functions, and generalized linear models.

structure.fmla

A formula denoting the treatment variable on the left hand side and an optional grouping expression on the right hand side. For example, z ~ 1 indicates no grouping. z ~ s subsets the data only computing distances within the subsets formed by s. See method notes, below, for additional formula options.

...

Additional method arguments. Most methods require a 'data' argument.

data

Data where the variables references in `x` live.

subset

If non-NULL, the subset of `data` to be used.

standardization.scale

A function to scale the distances; by default uses `mad`.

trtgrp

Dummy variable for treatment group membership.

Value

Object of class optmatch.dlist, which is suitable to be given as distance argument to fullmatch or pairmatch.

Details

The mdist method provides three ways to construct a matching distance (i.e., a distance matrix or suitably organized list of such matrices): guided by a function, by a fitted model, or by a formula. The class of the first argument given to mdist determines which of these methods is invoked.

The mdist.function method takes a function of two arguments. When called, this function will receive the treatment observations as the first argument and the control observations as the second argument. As an example, the following computes the raw differences between values of t1 for treatment units (here, nuclear plants with pr==1) and controls (here, plants with pr==0), returning the result as a distance matrix:

sdiffs <- function(treatments, controls) { abs(outer(treatments$t1, controls$t1, `-`)) }

The mdist.function method does similar things as the earlier optmatch function makedist, although the interface is a bit different.

The mdist.formula method computes the squared Mahalanobis distance between observations, with the right-hand side of the formula determining which variables contribute to the Mahalanobis distance. If matching is to be done within strata, the stratification can be communicated using either the structure.fmla argument (e.g. ~ grp) or as part of the main formula (e.g. z ~ x1 + x2 | grp).

An mdist.glm method takes an argument of class glm as first argument. It assumes that this object is a fitted propensity model, extracting distances on the linear propensity score (logits of the estimated conditional probabilities) and, by default, rescaling the distances by the reciprocal of the pooled s.d. of treatment- and control-group propensity scores. (The scaling uses mad, for resistance to outliers, by default; this can be changed to the actual s.d., or rescaling can be skipped entirely, by setting argument standardization.scale to sd or NULL, respectively.) A mdist.bigglm method works analogously with bigglm objects, created by the bigglm function from package ‘biglm’, which can handle bigger data sets than the ordinary glm function can. In contrast with mdist.glm it requires additional data and structure.fmla arguments. (If you have enough data to have to use bigglm, then you'll probably have to subgroup before matching to avoid memory problems. So you'll have to use the structure.fmla argument anyway.)

References

P.~R. Rosenbaum and D.~B. Rubin (1985), ‘Constructing a control group using multivariate matched sampling methods that incorporate the propensity score’, The American Statistician, 39 33--38.

See Also

fullmatch, pairmatch, match_on