# NOT RUN {
# A simple mediation example is the Tal_Or data set (pmi for Hayes)
#The pmi data set from Hayes is available as the Tal_Or data set.
mod4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or,n.iter=50)
summary(mod4)
#Two mediators (from Hayes model 6 (chapter 5))
mod6 <- mediate(reaction ~ cond + (pmi) + (import), data =Tal_Or,n.iter=50)
summary(mod6)
#Moderated mediation is done for the Garcia (Garcia, 2010) data set.
# (see Hayes, 2013 for the protest data set
#n.iter set to 50 (instead of default of 5000) for speed of example
#no mediation, just an interaction
mod7 <- mediate(liking ~ sexism * prot2 , data=Garcia, n.iter = 50)
summary(mod7)
data(GSBE) #The Garcia et al data set (aka GSBE)
mod11.4 <- mediate(liking ~ sexism * prot2 + (respappr), data=Garcia,
n.iter = 50,zero=FALSE) #to match Hayes
summary(mod11.4)
#to see this interaction graphically, run the examples in ?Garcia
#data from Preacher and Hayes (2004)
sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35,
-0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33,
-1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72,
0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1,
1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1,
1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive",
"standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26,
-0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07,
-0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11,
-0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB"
), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction",
"Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY",
"ATTRIB")))
#n.iter set to 50 (instead of default of 5000) for speed of example
#There are several forms of input. The original specified y, x , and the mediator
#mediate(1,2,3,sobel,n.iter=50) #The example in Preacher and Hayes
#As of October, 2017 we can specify this in a formula mode
mediate (SATIS ~ THERAPY + (ATTRIB),data=sobel, n.iter=50) #specify the mediator by
# adding parentheses
#A.C. Kerchoff, (1974) Ambition and Attainment: A Study of Four Samples of American Boys.
#Data from sem package taken from Kerckhoff (and in turn, from Lisrel manual)
R.kerch <- structure(list(Intelligence = c(1, -0.1, 0.277, 0.25, 0.572,
0.489, 0.335), Siblings = c(-0.1, 1, -0.152, -0.108, -0.105,
-0.213, -0.153), FatherEd = c(0.277, -0.152, 1, 0.611, 0.294,
0.446, 0.303), FatherOcc = c(0.25, -0.108, 0.611, 1, 0.248, 0.41,
0.331), Grades = c(0.572, -0.105, 0.294, 0.248, 1, 0.597, 0.478
), EducExp = c(0.489, -0.213, 0.446, 0.41, 0.597, 1, 0.651),
OccupAsp = c(0.335, -0.153, 0.303, 0.331, 0.478, 0.651, 1
)), .Names = c("Intelligence", "Siblings", "FatherEd", "FatherOcc",
"Grades", "EducExp", "OccupAsp"), class = "data.frame", row.names = c("Intelligence",
"Siblings", "FatherEd", "FatherOcc", "Grades", "EducExp", "OccupAsp"
))
#n.iter set to 50 (instead of default of 5000) for speed of demo
#mod.k <- mediate("OccupAsp","Intelligence",m= c(2:5),data=R.kerch,n.obs=767,n.iter=50)
#new style
mod.k <- mediate(OccupAsp ~ Intelligence + (Siblings) + (FatherEd) + (FatherOcc) +
(Grades), data = R.kerch, n.obs=767, n.iter=50)
mediate.diagram(mod.k)
#print the path values
mod.k
#Compare the following solution to the path coefficients found by the sem package
#mod.k2 <- mediate(y="OccupAsp",x=c("Intelligence","Siblings","FatherEd","FatherOcc"),
# m= c(5:6),data=R.kerch,n.obs=767,n.iter=50)
#new format
mod.k2 <- mediate(OccupAsp ~ Intelligence + Siblings + FatherEd + FatherOcc + (Grades) +
(EducExp),data=R.kerch, n.obs=767, n.iter=50)
mediate.diagram(mod.k2,show.c=FALSE) #simpler output
#print the path values
mod.k2
#Several interesting test cases are taken from analyses of the Spengler data set
#This is temporarily added to psych from psychTools to help build for CRAN
#Although the sample sizes are actually very large in the first wave, I use the
#sample sizes from the last wave
#We set the n.iter to be 50 instead of the default value of 5,000
mod1 <- mediate(Income.50 ~ IQ + Parental+ (Ed.11) ,data=Spengler,
n.obs = 1952, n.iter=50)
mod2 <- mediate(Income.50 ~ IQ + Parental+ (Ed.11) + (Income.11)
,data=Spengler,n.obs = 1952, n.iter=50)
# mod22 <- mediate(Income.50 + Educ.50 ~ IQ + Parental+ (Ed.11) + (Income.11)
# ,data=Spengler,n.obs = 1952, n.iter=50)
#Now, compare these models
anova(mod1,mod2)
# }
Run the code above in your browser using DataLab