#
data(GlobalPatterns)
GP = GlobalPatterns
mergedGP = merge_samples(GlobalPatterns, "SampleType")
SD = merge_samples(sample_data(GlobalPatterns), "SampleType")
print(SD)
print(mergedGP)
sample_names(GlobalPatterns)
sample_names(mergedGP)
identical(SD, sample_data(mergedGP))
# The OTU abundances of merged samples are summed
# Let's investigate this ourselves looking at just the top10 most abundance OTUs...
OTUnames10 = names(sort(taxa_sums(GP), TRUE)[1:10])
GP10 = prune_taxa(OTUnames10, GP)
mGP10 = prune_taxa(OTUnames10, mergedGP)
ocean_samples = sample_names(subset(sample_data(GP), SampleType=="Ocean"))
print(ocean_samples)
otu_table(GP10)[, ocean_samples]
rowSums(otu_table(GP10)[, ocean_samples])
otu_table(mGP10)["Ocean", ]
Run the code above in your browser using DataLab