Learn R Programming

SpatioTemporal (version 1.1.2)

mesa.model: Example of a STmodel Structure

Description

Example of a model structure holding observations, geographic covariates, observation locations, smooth temporal trends, spatio-temporal covariates, and covariance specifications for the model.

Arguments

format

A list with elements, a detailed description of each elements is given in details below

source

Contains monitoring data from the MESA Air project, see Cohen et.al. (2009) and mesa.data.raw for details.

Details

A STmodel object consists of a list with, some or all of, the following elements: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

References

M. A. Cohen, S. D. Adar, R. W. Allen, E. Avol, C. L. Curl, T. Gould, D. Hardie, A. Ho, P. Kinney, T. V. Larson, P. D. Sampson, L. Sheppard, K. D. Stukovsky, S. S. Swan, L. S. Liu, J. D. Kaufman. (2009) Approach to Estimating Participant Pollutant Exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environmental Science & Technology: 43(13), 4687-4693.

See Also

createSTmodel for creation of STmodel objects. createSTdata for creation of the originating STdata object.

Other example data: est.cv.mesa, est.mesa.model, MCMC.mesa.model, mesa.data, mesa.data.raw, pred.mesa.model

Examples

Run this code
##load the data
data(mesa.model)

##examine components
names(mesa.model)
print(mesa.model)
summary(mesa.model)

##requested geographic and spatio-temporal covariates
mesa.model$LUR.list
mesa.model$ST.list

##covariates for the temporal intercept
head(mesa.model$LUR$const)
##...and the two smooth temporal trends
head(mesa.model$LUR$V1)
head(mesa.model$LUR$V2)

##Some important dimensions of the model
loglikeSTdim(mesa.model)

Run the code above in your browser using DataLab