metacor(cor, n, studlab,
data=NULL, subset=NULL,
sm="ZCOR",
level=0.95, level.comb=level,
comb.fixed=TRUE, comb.random=TRUE,
hakn=FALSE,
method.tau="DL", tau.preset=NULL, TE.tau=NULL,
tau.common=FALSE,
prediction=FALSE, level.predict=level,
method.bias="linreg",
title="", complab="", outclab="",
byvar, bylab, print.byvar=TRUE,
keepdata=TRUE
)
"ZCOR"
or "COR"
) is to be used for pooling of
studies."DL"
, "REML"
, "ML"
, "HS"
, "SJ"
,
"HE"
, or "EB"
"rank"
, "linreg"
, or "mm"
, can
be abbreviated.event.e
).c("metacor", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:sm="ZCOR"
) or correlations (sm="COR"
) for individual
studies."Inverse"
hakn=TRUE
).keepdata=TRUE
).keepdata=TRUE
).sm="ZCOR"
)
or direct combination of correlations (sm="COR"
) (see Cooper et
al., p264-5 and p273-4).Only few statisticians would advocate the use of untransformed correlations unless sample sizes are very large (see Cooper et al., p265). The artificial example given below shows that the smallest study gets the largest weight if correlations are combined directly because the correlation is closest to 1.
Internally, both fixed effect and random effects models are calculated
regardless of values choosen for arguments comb.fixed
and
comb.random
. Accordingly, the estimate for the random effects
model can be extracted from component TE.random
of an object
of class "meta"
even if comb.random=FALSE
. However, all
functions in R package meta
will adequately consider the values
for comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random effects
model if comb.random=FALSE
.
If R package metafor (Viechtbauer 2010) is installed, the following statistical methods are also available.
For the random effects model (argument comb.random=TRUE
), the
method by Hartung and Knapp (Knapp, Hartung 2003) is used to adjust
test statistics and confidence intervals if argument
hakn=TRUE
(internally R function rma.uni
of R package
metafor is called).
Several methods are available to estimate the between-study variance
$\tau^2$ (argument method.tau
):
method.tau="DL"
) (default)method.tau="REML"
)method.tau="ML"
)method.tau="HS"
)method.tau="SJ"
)method.tau="HE"
)method.tau="EB"
).rma.uni
of R package metafor is called internally. See help
page of R function rma.uni
for more details on the various
methods to estimate between-study variance $\tau^2$. A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction
and
comb.random
are TRUE
.
R function update.meta
can be used to redo the
meta-analysis of an existing metacor object by only specifying
arguments which should be changed.
Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta
, metacont
, metagen
, print.meta
metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))
forest(metacor(c(0.85, 0.7, 0.95), c(20, 40, 10)))
metacor(c(0.85, 0.7, 0.95), c(20, 40, 10), sm="cor")
Run the code above in your browser using DataLab