metagen(TE, seTE, studlab, data=NULL, subset=NULL, sm="",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
byvar, bylab, print.byvar=TRUE)
"RD"
, "RR"
, "OR"
, "AS"
,
"MD"
, "SMD"
.TE
).c("metagen", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"Inverse"
. Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed
and comb.random
. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random
of an object of class "meta"
even if
comb.random=FALSE
. However, all functions in R package
meta
will adequately consider the values for comb.fixed
and comb.random
. E.g. function print.meta
will
not print results for the random effects model if
comb.random=FALSE
.
metabin
, metacont
, print.meta
data(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", meth="I")
meta1
##
## Identical results by using the following commands:
##
meta1
metagen(meta1$TE, meta1$seTE, sm="RR")
##
## Meta-analysis of survival data:
##
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm="HR")
Run the code above in your browser using DataLab