metagen(TE, seTE, studlab, data=NULL, subset=NULL, sm="",
        level = 0.95, level.comb = level,
        comb.fixed=TRUE, comb.random=TRUE,
        title="", complab="", outclab="",
        label.e="Experimental", label.c="Control",
        byvar, bylab, print.byvar=TRUE)"RD", "RR", "OR", "AS",
    "MD", "SMD".TE).c("metagen", "meta") with corresponding
  print, summary, plot function. The object is a
  list containing the following components:"Inverse".  Internally, both fixed effect and random effects models are
  calculated regardless of values choosen for arguments
  comb.fixed and comb.random. Accordingly, the estimate
  for the random effects model can be extracted from component
  TE.random of an object of class "meta" even if
  comb.random=FALSE. However, all functions in R package
  meta will adequately consider the values for comb.fixed
  and comb.random. E.g. function print.meta will
  not print results for the random effects model if
  comb.random=FALSE.
metabin, metacont, print.metadata(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", meth="I")
meta1
##
## Identical results by using the following commands:
##
meta1
metagen(meta1$TE, meta1$seTE, sm="RR")
##
## Meta-analysis of survival data:
##
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm="HR")Run the code above in your browser using DataLab