metagen(TE, seTE, studlab, data=NULL, subset=NULL, sm="",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
byvar, bylab, print.byvar=TRUE)"RD", "RR", "OR", "AS",
"MD", "SMD".TE).c("metagen", "meta") with corresponding
print, summary, plot function. The object is a
list containing the following components:"Inverse". Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed and comb.random. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random of an object of class "meta" even if
comb.random=FALSE. However, all functions in R package
meta will adequately consider the values for comb.fixed
and comb.random. E.g. function print.meta will
not print results for the random effects model if
comb.random=FALSE.
metabin, metacont, print.metadata(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", meth="I")
meta1
##
## Identical results by using the following commands:
##
meta1
metagen(meta1$TE, meta1$seTE, sm="RR")
##
## Meta-analysis of survival data:
##
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm="HR")Run the code above in your browser using DataLab