Learn R Programming

metagen (version 1.0)

metagen: Inference: Analysis of the data set

Description

Runs all implemented methods and combines them in a neat summary.

Usage

metagen(y, d, x, sgnf, s = NULL, n, method = list("univariate", "multivariate"), adjusted = FALSE)

Arguments

y
k-vector of responses.
d
k-vector of heteroscedasticities.
x
design k-p-matrix.
sgnf
vector of significance levels.
s
k-vector of study responses. Default is NULL. If 'adjusted=TRUE', this value needs to be given.
n
draws from the pivotal distribution.
method
Default is 'list("univariate", "multivariate")'.
adjusted
: TRUE or FALSE

Value

The same return type as the skeleton 'metagenEmpty()'.

Examples

Run this code
bcg   <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

# Runs a standard analysis, use n=1000 in an actual
# analysis instead!
m1 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, n=50)
m2 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, n=50)

# Runs the methods based on generalised principles via an
# adjustment for the unknown heteroscedasticity.  Use
# n=1000 in an actual analysis instead!!
bcg_s <- bcg$size
m3 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, s=bcg_s, n=50,
  adj=TRUE)
m4 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, s=bcg_s,
  n=50, adj=TRUE)

if (!all(names(m1) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m2) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m3) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m4) == names(metagenEmpty()))) stop("Name clash")

Run the code above in your browser using DataLab