metaprop(event, n, studlab,
data = NULL, subset = NULL,
sm="PLOGIT",
incr=0.5, allincr=FALSE, addincr=FALSE,
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
hakn=FALSE,
method.tau="DL", tau.preset=NULL, TE.tau=NULL,
tau.common=FALSE,
prediction=FALSE, level.predict=level,
method.bias="linreg",
title="", complab="", outclab="",
byvar, bylab, print.byvar=TRUE,
keepdata=TRUE, warn=TRUE)
"PFT"
, "PAS"
, "PRAW"
, "PLN"
, or
"PLOGIT"
) is to be used for pooling of studies, see Details.incr
is added to each
cell frequency of all studies if at least one study has a zero cell
count. If FALSE (default), incr
is added only to each cell frequency of
studies with a zero cell count.incr
is added to each cell
frequency of all studies irrespective of zero cell counts."DL"
, "REML"
, "ML"
, "HS"
, "SJ"
,
"HE"
, or "EB"
"rank"
, "linreg"
, or "mm"
, can
be abbreviated.event.e
).incr
to studies with zero cell frequencies should result in a warning.c("metaprop", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"proportion"
"Inverse"
hakn=TRUE
).keepdata=TRUE
).keepdata=TRUE
).
sm="PFT"
: Freeman-Tukey Double arcsine transformationsm="PAS"
: Arcsine transformationsm="PRAW"
: Raw, i.e. untransformed, proportionssm="PLN"
: Log transformationsm="PLOGIT"
: Logit transformation In older versions of the R package meta (< 1.5.0), only the
Freeman-Tukey Double arcsine transformation and the arcsine
transformation were implemented and an argument freeman.tukey
could be used to distinguish between these two methods. Argument
freeman.tukey
has been removed from R package meta with
version 2.4-0.
If the summary measure is equal to "PRAW", "PLN", or "PLOGIT", a
continuity correction is applied if any studies has a zero cell
count. By default, 0.5 is added to all cell frequencies of studies
with a zero cell count (argument incr
).
Note, exact binomial confidence intervals will be calculated for
individual study results, e.g. in R function
summary.meta
.
Internally, both fixed effect and random effects models are calculated
regardless of values choosen for arguments comb.fixed
and
comb.random
. Accordingly, the estimate for the random effects
model can be extracted from component TE.random
of an object
of class "meta"
even if comb.random=FALSE
. However, all
functions in R package meta
will adequately consider the values
for comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random effects
model if comb.random=FALSE
.
If R package metafor (Viechtbauer 2010) is installed, the following statistical methods are also available.
For the random effects model (argument comb.random=TRUE
), the
method by Hartung and Knapp (Knapp, Hartung 2003) is used to adjust
test statistics and confidence intervals if argument
hakn=TRUE
(internally R function rma.uni
of R package
metafor is called).
Several methods are available to estimate the between-study variance
$\tau^2$ (argument method.tau
):
method.tau="DL"
) (default)method.tau="REML"
)method.tau="ML"
)method.tau="HS"
)method.tau="SJ"
)method.tau="HE"
)method.tau="EB"
).rma.uni
of R package metafor is called internally. See help
page of R function rma.uni
for more details on the various
methods to estimate between-study variance $\tau^2$. A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction
and
comb.random
are TRUE
.
R function update.meta
can be used to redo the
meta-analysis of an existing metaprop object by only specifying
arguments which should be changed.
Freeman MF & Tukey JW (1950), Transformations related to the angular and the square root. Annals of Mathematical Statistics, 21, 607--611. Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137-159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693-710, doi: 10.1002/sim.1482 .
Miller JJ (1978), The inverse of the Freeman-Tukey double arcsine transformation. The American Statistician, 32, 138.
Pettigrew HM, Gart JJ, Thomas DG (1986), The bias and higher cumulants of the logarithm of a binomial variate. Biometrika, 73, 425--435.
Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta
, metacont
, metagen
, print.meta
metaprop(4:1, c(10, 20, 30, 40))
metaprop(4:1, c(10, 20, 30, 40), sm="PAS")
metaprop(4:1, c(10, 20, 30, 40), sm="PRAW")
metaprop(4:1, c(10, 20, 30, 40), sm="PLN")
metaprop(4:1, c(10, 20, 30, 40), sm="PFT")
forest(metaprop(4:1, c(10, 20, 30, 40)))
m1 <- metaprop(c(0, 0, 10, 10), rep(100, 4))
m2 <- metaprop(c(0, 0, 10, 10), rep(100, 4), incr=0.1)
summary(m1)
summary(m2)
forest(m1)
forest(m2)
Run the code above in your browser using DataLab