Learn R Programming

keras (version 2.7.0)

metric_false_negatives: Calculates the number of false negatives

Description

Calculates the number of false negatives

Usage

metric_false_negatives(..., thresholds = NULL, name = NULL, dtype = NULL)

Arguments

...

Passed on to the underlying metric. Used for forwards and backwards compatibility.

thresholds

(Optional) Defaults to 0.5. A float value or a list of float threshold values in [0, 1]. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold is TRUE, below is FALSE). One metric value is generated for each threshold value.

name

(Optional) string name of the metric instance.

dtype

(Optional) data type of the metric result.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics = ), or used as a standalone object. See ?Metric for example usage.

Details

If sample_weight is given, calculates the sum of the weights of false negatives. This metric creates one local variable, accumulator that is used to keep track of the number of false negatives.

If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.

See Also

Other metrics: custom_metric(), metric_accuracy(), metric_auc(), metric_binary_accuracy(), metric_binary_crossentropy(), metric_categorical_accuracy(), metric_categorical_crossentropy(), metric_categorical_hinge(), metric_cosine_similarity(), metric_false_positives(), metric_hinge(), metric_kullback_leibler_divergence(), metric_logcosh_error(), metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(), metric_mean_relative_error(), metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(), metric_mean_wrapper(), metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(), metric_recall_at_precision(), metric_recall(), metric_root_mean_squared_error(), metric_sensitivity_at_specificity(), metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(), metric_sparse_top_k_categorical_accuracy(), metric_specificity_at_sensitivity(), metric_squared_hinge(), metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives(), metric_true_positives()