# NOT RUN {
# (1) Fit of a Weibull distribution to serving size data by maximum
# goodness-of-fit estimation using all the distances available
#
data(groundbeef)
serving <- groundbeef$serving
mgedist(serving, "weibull", gof="CvM")
mgedist(serving, "weibull", gof="KS")
mgedist(serving, "weibull", gof="AD")
mgedist(serving, "weibull", gof="ADR")
mgedist(serving, "weibull", gof="ADL")
mgedist(serving, "weibull", gof="AD2R")
mgedist(serving, "weibull", gof="AD2L")
mgedist(serving, "weibull", gof="AD2")
# (2) Fit of a uniform distribution using Cramer-von Mises or
# Kolmogorov-Smirnov distance
#
set.seed(1234)
u <- runif(100,min=5,max=10)
mgedist(u,"unif",gof="CvM")
mgedist(u,"unif",gof="KS")
# (3) Fit of a triangular distribution using Cramer-von Mises or
# Kolmogorov-Smirnov distance
#
# }
# NOT RUN {
require(mc2d)
set.seed(1234)
t <- rtriang(100,min=5,mode=6,max=10)
mgedist(t,"triang",start = list(min=4, mode=6,max=9),gof="CvM")
mgedist(t,"triang",start = list(min=4, mode=6,max=9),gof="KS")
# }
# NOT RUN {
# (4) scaling problem
# the simulated dataset (below) has particularly small values, hence without scaling (10^0),
# the optimization raises an error. The for loop shows how scaling by 10^i
# for i=1,...,6 makes the fitting procedure work correctly.
set.seed(1234)
x2 <- rnorm(100, 1e-4, 2e-4)
for(i in 6:0)
cat(i, try(mgedist(x*10^i,"cauchy")$estimate, silent=TRUE), "\n")
# }
Run the code above in your browser using DataLab