Imputes univariate missing data using logistic regression
by a bootstrapped logistic regression model.
The bootstrap method draws a simple bootstrap sample with replacement
from the observed data y[ry]
and x[ry, ]
.
mice.impute.logreg.boot(y, ry, x, wy = NULL, ...)
Vector to be imputed
Logical vector of length length(y)
indicating the
the subset y[ry]
of elements in y
to which the imputation
model is fitted. The ry
generally distinguishes the observed
(TRUE
) and missing values (FALSE
) in y
.
Numeric design matrix with length(y)
rows with predictors for
y
. Matrix x
may have no missing values.
Logical vector of length length(y)
. A TRUE
value
indicates locations in y
for which imputations are created.
Other named arguments.
Vector with imputed data, same type as y
, and of length
sum(wy)
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
http://www.jstatsoft.org/v45/i03/
#'Van Buuren, S. (2012). Flexible Imputation of Missing Data. CRC/Chapman \& Hall, FL:Boca Raton.
Other univariate imputation functions: mice.impute.cart
,
mice.impute.lda
,
mice.impute.logreg
,
mice.impute.mean
,
mice.impute.midastouch
,
mice.impute.norm.boot
,
mice.impute.norm.nob
,
mice.impute.norm.predict
,
mice.impute.norm
,
mice.impute.pmm
,
mice.impute.polr
,
mice.impute.polyreg
,
mice.impute.quadratic
,
mice.impute.rf
,
mice.impute.ri