# NOT RUN {
require(stats)
set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x0 <- 1; Sigma <- seq(0.01, 10, length = 11)
h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h # Parzen-Rosenblatt estimator at x0.
# For non-robust method:
Bj <- mean(Xdata) - Xdata
# # For rank transformation-based method (requires sorted data):
# Bj <- -J_admissible(1:n / n) # rank trafo
BV <- kader:::bias_AND_scaledvar(sigma = Sigma, Ai = Ai, Bj = Bj,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
kader:::minimize_MSEHat(VarHat.scaled = BV$VarHat.scaled,
BiasHat.squared = (BV$BiasHat)^2, sigma = Sigma, Ai = Ai, Bj = Bj,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE, plot = FALSE)
# }
Run the code above in your browser using DataLab