# NOT RUN {
miss_var_run(pedestrian, hourly_counts)
# }
# NOT RUN {
# find the number of runs missing/complete for each month
library(dplyr)
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
library(ggplot2)
# explore the number of missings in a given run
miss_var_run(pedestrian, hourly_counts) %>%
filter(is_na == "missing") %>%
count(run_length) %>%
ggplot(aes(x = run_length,
y = n)) +
geom_col()
# look at the number of missing values and the run length of these.
miss_var_run(pedestrian, hourly_counts) %>%
ggplot(aes(x = is_na,
y = run_length)) +
geom_boxplot()
# using group_by
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab