# Example 1: simulated data
nn = 1000
mu1 = exp(2.5) # also known as lambda1
mu2 = exp(3)
(phi = logit(-0.5, inverse=TRUE))
mdata = data.frame(y = ifelse(runif(nn) < phi, rpois(nn, mu1), rpois(nn, mu2)))
fit = vglm(y ~ 1, mix2poisson, mdata)
coef(fit, matrix=TRUE)
# Compare the results with the truth
round(rbind('Estimated'=Coef(fit), 'Truth'=c(phi, mu1, mu2)), dig=2)
# Plot the results
ty = with(mdata, table(y))
plot(names(ty), ty, type="h", main="Red=estimate, blue=truth",
ylab="Frequency", xlab="y")
abline(v=Coef(fit)[-1], lty=2, col="red", lwd=2)
abline(v=c(mu1, mu2), lty=2, col="blue", lwd=2)
# Example 2: London Times data (Lange, 1997, p.31)
ltdata1 = data.frame(deaths = 0:9,
freq = c(162, 267, 271, 185, 111, 61, 27, 8, 3, 1))
ltdata2 = data.frame(y = with(ltdata1, rep(deaths, freq)))
# Usually this does not work well unless nsimEIM is large
fit = vglm(deaths ~ 1, weight=freq, data=ltdata1,
mix2poisson(iphi=0.3, il1=1, il2=2.5, nsimEIM=5000))
# This works better in general
fit = vglm(y ~ 1, mix2poisson(iphi=0.3, il1=1, il2=2.5), ltdata2)
coef(fit, matrix=TRUE)
Coef(fit)
Run the code above in your browser using DataLab