# NOT RUN {
## Cameron and Trivedi's Microeconometrics p.493 There are two
## alternative specific variables : price and catch one individual
## specific variable (income) and four fishing mode : beach, pier, boat,
## charter
data("Fishing", package = "mlogit")
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode")
## a pure "conditional" model
summary(mlogit(mode ~ price + catch, data = Fish))
## a pure "multinomial model"
summary(mlogit(mode ~ 0 | income, data = Fish))
## which can also be estimated using multinom (package nnet)
summary(nnet::multinom(mode ~ income, data = Fishing))
## a "mixed" model
m <- mlogit(mode ~ price + catch | income, data = Fish)
summary(m)
## same model with charter as the reference level
m <- mlogit(mode ~ price + catch | income, data = Fish, reflevel = "charter")
## same model with a subset of alternatives : charter, pier, beach
m <- mlogit(mode ~ price + catch | income, data = Fish,
alt.subset = c("charter", "pier", "beach"))
## model on unbalanced data i.e. for some observations, some
## alternatives are missing
# a data.frame in wide format with two missing prices
Fishing2 <- Fishing
Fishing2[1, "price.pier"] <- Fishing2[3, "price.beach"] <- NA
mlogit(mode ~ price + catch | income, Fishing2, shape = "wide", varying = 2:9)
# a data.frame in long format with three missing lines
data("TravelMode", package = "AER")
Tr2 <- TravelMode[-c(2, 7, 9),]
mlogit(choice ~ wait + gcost | income + size, Tr2)
## An heteroscedastic logit model
data("TravelMode", package = "AER")
hl <- mlogit(choice ~ wait + travel + vcost, TravelMode, heterosc = TRUE)
## A nested logit model
TravelMode$avincome <- with(TravelMode, income * (mode == "air"))
TravelMode$time <- with(TravelMode, travel + wait)/60
TravelMode$timeair <- with(TravelMode, time * I(mode == "air"))
TravelMode$income <- with(TravelMode, income / 10)
# Hensher and Greene (2002), table 1 p.8-9 model 5
TravelMode$incomeother <- with(TravelMode, ifelse(mode %in% c('air', 'car'), income, 0))
nl <- mlogit(choice ~ gcost + wait + incomeother, TravelMode,
nests = list(public = c('train', 'bus'), other = c('car','air')))
# same with a comon nest elasticity (model 1)
nl2 <- update(nl, un.nest.el = TRUE)
## a probit model
# }
# NOT RUN {
pr <- mlogit(choice ~ wait + travel + vcost, TravelMode, probit = TRUE)
# }
# NOT RUN {
## a mixed logit model
# }
# NOT RUN {
rpl <- mlogit(mode ~ price + catch | income, Fishing, varying = 2:9,
rpar = c(price= 'n', catch = 'n'), correlation = TRUE,
alton = NA, R = 50)
summary(rpl)
rpar(rpl)
cor.mlogit(rpl)
cov.mlogit(rpl)
rpar(rpl, "catch")
summary(rpar(rpl, "catch"))
# }
# NOT RUN {
# a ranked ordered model
data("Game", package = "mlogit")
g <- mlogit(ch ~ own | hours, Game, varying = 1:12, ranked = TRUE,
reflevel = "PC", idnames = c("chid", "alt"))
# }
Run the code above in your browser using DataLab