Last chance! 50% off unlimited learning
Sale ends in
This function creates a multilayer perceptron (MLP) and trains it. MLPs are fully connected feedforward networks, and probably the most common network architecture in use. Training is usually performed by error backpropagation or a related procedure.
There are a lot of different learning functions present in SNNS that can be
used together with this function, e.g., Std_Backpropagation
,
BackpropBatch
, BackpropChunk
, BackpropMomentum
,
BackpropWeightDecay
, Rprop
, Quickprop
, SCG
(scaled conjugate gradient), ...
mlp(x, ...)# S3 method for default
mlp(
x,
y,
size = c(5),
maxit = 100,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "Std_Backpropagation",
learnFuncParams = c(0.2, 0),
updateFunc = "Topological_Order",
updateFuncParams = c(0),
hiddenActFunc = "Act_Logistic",
shufflePatterns = TRUE,
linOut = FALSE,
outputActFunc = if (linOut) "Act_Identity" else "Act_Logistic",
inputsTest = NULL,
targetsTest = NULL,
pruneFunc = NULL,
pruneFuncParams = NULL,
...
)
an rsnns
object.
a matrix with training inputs for the network
additional function parameters (currently not used)
the corresponding targets values
number of units in the hidden layer(s)
maximum of iterations to learn
the initialization function to use
the parameters for the initialization function
the learning function to use
the parameters for the learning function
the update function to use
the parameters for the update function
the activation function of all hidden units
should the patterns be shuffled?
sets the activation function of the output units to linear or logistic (ignored if outputActFunc is given)
the activation function of all output units
a matrix with inputs to test the network
the corresponding targets for the test input
the pruning function to use
the parameters for the pruning function. Unlike the other functions, these have to be given in a named list. See the pruning demos for further explanation.
Std_Backpropagation
, BackpropBatch
, e.g., have two parameters,
the learning rate and the maximum output difference. The learning rate is
usually a value between 0.1 and 1. It specifies the gradient descent step
width. The maximum difference defines, how much difference between output and
target value is treated as zero error, and not backpropagated. This parameter
is used to prevent overtraining. For a complete list of the parameters of all
the learning functions, see the SNNS User Manual, pp. 67.
The defaults that are set for initialization and update functions usually don't have to be changed.
Rosenblatt, F. (1958), 'The perceptron: A probabilistic model for information storage and organization in the brain', Psychological Review 65(6), 386--408.
Rumelhart, D. E.; Clelland, J. L. M. & Group, P. R. (1986), Parallel distributed processing :explorations in the microstructure of cognition, Mit, Cambridge, MA etc.
Zell, A. et al. (1998), 'SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2', IPVR, University of Stuttgart and WSI, University of Tübingen. https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)
if (FALSE) demo(iris)
if (FALSE) demo(laser)
if (FALSE) demo(encoderSnnsCLib)
data(iris)
#shuffle the vector
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
irisValues <- iris[,1:4]
irisTargets <- decodeClassLabels(iris[,5])
#irisTargets <- decodeClassLabels(iris[,5], valTrue=0.9, valFalse=0.1)
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
iris <- normTrainingAndTestSet(iris)
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFuncParams=c(0.1),
maxit=50, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
summary(model)
model
weightMatrix(model)
extractNetInfo(model)
par(mfrow=c(2,2))
plotIterativeError(model)
predictions <- predict(model,iris$inputsTest)
plotRegressionError(predictions[,2], iris$targetsTest[,2])
confusionMatrix(iris$targetsTrain,fitted.values(model))
confusionMatrix(iris$targetsTest,predictions)
plotROC(fitted.values(model)[,2], iris$targetsTrain[,2])
plotROC(predictions[,2], iris$targetsTest[,2])
#confusion matrix with 402040-method
confusionMatrix(iris$targetsTrain, encodeClassLabels(fitted.values(model),
method="402040", l=0.4, h=0.6))
Run the code above in your browser using DataLab