Parameter xval is set to 0 in order to save some computation time.
Parameter model has been renamed to keep_model.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("regr.rpart")
lrn("regr.rpart")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: rpart
| Id | Type | Default | Range | Levels |
| minsplit | integer | 20 | \([1, \infty)\) | - |
| minbucket | integer | - | \([1, \infty)\) | - |
| cp | numeric | 0.01 | \([0, 1]\) | - |
| maxcompete | integer | 4 | \([0, \infty)\) | - |
| maxsurrogate | integer | 5 | \([0, \infty)\) | - |
| maxdepth | integer | 30 | \([1, 30]\) | - |
| usesurrogate | integer | 2 | \([0, 2]\) | - |
| surrogatestyle | integer | 0 | \([0, 1]\) | - |
| xval | integer | 10 | \([0, \infty)\) | - |
| keep_model | logical | FALSE | \((-\infty, \infty)\) | TRUE, FALSE |
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRpart
new()Creates a new instance of this R6 class.
LearnerRegrRpart$new()
importance()The importance scores are extracted from the model slot variable.importance.
LearnerRegrRpart$importance()
Named numeric().
selected_features()Selected features are extracted from the model slot frame$var.
LearnerRegrRpart$selected_features()
character().
clone()The objects of this class are cloneable with this method.
LearnerRegrRpart$clone(deep = FALSE)
deepWhether to make a deep clone.
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. 10.1201/9781315139470.
Dictionary of Learners: mlr_learners
as.data.table(mlr_learners) for a complete table of all (also dynamically created) Learner implementations.
Other Learner:
LearnerClassif,
LearnerRegr,
Learner,
mlr_learners_classif.debug,
mlr_learners_classif.featureless,
mlr_learners_classif.rpart,
mlr_learners_regr.featureless,
mlr_learners