Binary classification measure defined as $$ \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}. $$ Also know as "recall" or "sensitivity".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("recall") msr("recall")
Type: "binary"
Range: \([0, 1]\)
Minimize: FALSE
Required prediction: response
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp