modificationIndices(object, standardized = TRUE, power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), free.remove = TRUE, na.remove = TRUE, op = NULL)
modindices(object, standardized = TRUE, power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), free.remove = TRUE, na.remove = TRUE, op = NULL)
lavaan
.TRUE
, two extra columns (sepc.lv and sepc.all)
will contain standardized values for the epc's. In the first column (sepc.lv),
standardizization is based on the variances of the (continuous) latent
variables. In the second column (sepc.all), standardization is based
on both the variances of both (continuous) observed and latent variables.
(Residual) covariances are standardized using (residual) variances.TRUE
, the (post-hoc) power is computed for each
modification index, using the values of delta
and alpha
.sort.
option.op
.HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939)
modindices(fit)
Run the code above in your browser using DataLab